[1]
D.M. Sayed, G.A. El-Nagar, S.Y. Sayed, B.E. El-Anadouli, M.S. El-Deab, Activation/deactivation behavior of nano-NiOx based anodes towards the OER: Influence of temperature, Electrochimica Acta. 276 (2018) 176-183.
DOI: 10.1016/j.electacta.2018.04.175
Google Scholar
[2]
M. Rani, U. Shanker, Photocatalytic degradation of toxic phenols from water using bimetallic metal oxide nanostructures, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 553 (2018) 546-561.
DOI: 10.1016/j.colsurfa.2018.05.071
Google Scholar
[3]
A.A. Khaleed, A. Bello, J.K. Dangbegnon, M.J. Madito, F.U. Ugbo, A.A. Akande, B.P. Dhonge, F. Barzegar, D.Y. Momodu, B.W. Mwakikunga, N. Manyala, Gas sensing study of hydrothermal reflux synthesized NiO/graphene foam electrode for CO sensing, J. Mater Sci. 52 (2017) (2035).
DOI: 10.1007/s10853-016-0491-6
Google Scholar
[4]
M.R. Kalaie, A.A. Youzbashi, M.A. Meshkot, F. Hosseini-Nasab, Preparation and characterization of superparamagnetic nickel oxide particles by chemical route, Applied Nanoscience. 6 (2016) 789-795.
DOI: 10.1007/s13204-015-0498-3
Google Scholar
[5]
D. Zhang, H. Chang, P. Li, Characterization of nickel oxide decorated-reduced graphene oxide nanocomposite and its sensing properties toward methane gas detection, J Mater Sci: Mater Electron. 27 (2016) 3723.
DOI: 10.1007/s10854-015-4214-6
Google Scholar
[6]
R. Prasad, V.Ganesh, B. R.Bhat, Nickel-oxide multiwall carbon-nanotube/ reduced graphene oxide a ternary composite for enzyme-free glucose sensing, RSC Adv. 6 (2016) 62491-62500.
DOI: 10.1039/c6ra08708f
Google Scholar
[7]
I.M.A. Mohamed, K.A. Khalil, H.M. Mousa, N.A.M. Barakat, Ni/Pd-Decorated Carbon NFs as an Efficient Electrocatalyst for Methanol Oxidation in Alkaline Medium, J. of Electronic Materials. 46 (2017) 265-273.
DOI: 10.1007/s11664-016-4900-z
Google Scholar
[8]
C. Schoeberl, M. Manolova, R. Freudenberger, Sol-gel-deposited cobalt and nickel oxide as an oxygen evolution catalyst in alkaline media, International Journal of Hydrogen Energy. 40 (35) (2015) 11773-11778.
DOI: 10.1016/j.ijhydene.2015.05.046
Google Scholar
[9]
С. Schoeberl, M. Manolova, R. Freudenberger, Sol-gel-deposited cobalt and nickel oxide as an oxygen evolution catalyst in alkaline media, 20th World Hydrogen Energy Conference. 1 (2014) 1-5.
DOI: 10.1016/j.ijhydene.2015.05.046
Google Scholar
[10]
G. Zeng, W. Li, S. Ci, J. Jia, Z. Wen, Highly Dispersed NiO Nanoparticles Decorating graphene Nanosheets for Non-enzymatic Glucose Sensor and Biofuel Cell, Scientific Reports. 6 (2016) 36454.
DOI: 10.1038/srep36454
Google Scholar
[11]
R.S. Kumar, S.J. Jeyakumar, M. Jothibas, I.K. Punithavathy, J.P. Richard, Influence of molar concentration on structural, optical and magnetic properties of NiO nanoparticles, Journal of Materials Science: Materials in Electronics. 28 (2017) 15668-15673.
DOI: 10.1007/s10854-017-7456-7
Google Scholar
[12]
A. Santhoshkumar, H.P. Kavitha, R. Suresh, Hydrothermal Synthesis, Characterization and Antibacterial Activity of NiO Nanoparticles, Journal of Advanced Chemical Sciences. 2(2016) 230-232.
Google Scholar
[13]
A. Rengaraj, Y. Haldorai, C.H. Kwak, S. Ahn, K.J. Jeon, S.H. Park, Y.K. Han, Y.S. Huh, Electrodeposition of flower-like nickel oxide on CVD-grown graphene to develop an electrochemical non-enzymatic biosensor, J. Mater. Chem. 3 (2015) 6301-6309.
DOI: 10.1039/c5tb00908a
Google Scholar
[14]
A.M. Mahmoud, F.A. Ibrahim, S.A. Shaban, N.A. Youssef, Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods, Egyptian Journal of Petroleum. 24 (2015) 27-35.
DOI: 10.1016/j.ejpe.2015.02.003
Google Scholar
[15]
D.T. Dam, X.Wang, J.M. Lee, Graphene/NiO Nanowires: Controllable One-Pot Synthesis and Enhanced Pseudocapacitive Behavior, ACS Appl. Mater. Interfaces. 6 (2014) 8246-8256.
DOI: 10.1021/am500700x
Google Scholar
[16]
C. Chen, C. Chen, P. Huang, F.Duan, S. Zhao, P. Li, J. Fan, Y. Song, W. Qin, NiO/nanoporous graphene composites with excellent supercapacitive performance produced by atomic layer deposition, Nanotechnology. 25 (2014) 504001.
DOI: 10.1088/0957-4484/25/50/504001
Google Scholar
[17]
K. Fominykh, J.M. Feckl, J. Sicklinger, M. Döblinger, S. Böcklein, J. Ziegler, L.Peter, J. Rathousky, E.W. Scheidt, T. Bein, D. Fattakhova-Rohlfing, , Ultrasmall Dispersible Crystalline Nickel Oxide Nanoparticles as High-Performance Catalysts for Electrochemical Water Splitting, Advanced Functional Materials. 24 (2014) 3123-3129.
DOI: 10.1002/adfm.201303600
Google Scholar
[18]
B.L. Kuzin, S.M. Beresnev, D.A. Osinkin, N.M. Bogdanovich, Y.A. Kotov, A.V. BagazeeV, Nickel-cermet electrodes for high-temperature electrochemical devices made using nanomaterials, Russian journal of electrochemistry. 46 (2010) 278-284.
DOI: 10.1134/s1023193510030043
Google Scholar
[19]
V.V. Demyan, L.N. Fesenko, E.Sh. Kagan, I. Zhukova, The behaviour of cadmium in the electrolysis of alternating asymmetrical sinusoidal current in a solution of potassium alkali. Analysis of current-voltage curves, Izv. higher educational. Sowing. Kavk. region. Tech. sciences. 1 (2018) 105-111.
DOI: 10.17213/0321-2653-2018-1-105-111
Google Scholar
[20]
, V.V. Demyan, J.I. Bespalova, L.N. Fesenko, To the question of the mechanism of oxidation of Nickel in aqueous alkaline solutions when the polarization variable asymmetric shock, In book: Abstracts of the conference. Institute of physical chemistry and electrochemistry. A. N. Frumkin of the Russian Academy of Sciences, 2017. p.24.
Google Scholar
[21]
V.V. Demyan, J.I. Bespalova,, L.N. Fesenko, J.A. Abramenko, To the question of the mechanism of oxidation of copper in a solution of potassium alkali, Izv. higher educational. Sowing. Kavk. region. Tech. sciences. 3 (2018) 119-123.
Google Scholar