[1]
V.V. Stepanov, V.A. Saldaev, V.E. Tsvetkov, Composite Material for Railroad Tie. Solid State Phenomena, 265 (2017) 587-591.
DOI: 10.4028/www.scientific.net/ssp.265.587
Google Scholar
[2]
D.B. Prosvirnikov, et al., IOP Conf. Ser.: Mater. Sci. Eng. 221 (2017) 012009.
Google Scholar
[3]
Rahman, Khandkar Siddikur, et al., Flat-pressed wood plastic composites from sawdust and recycled polyethylene terephthalate (PET): physical and mechanical properties, SpringerPlus 2.1 (2013) 629.
DOI: 10.1186/2193-1801-2-629
Google Scholar
[4]
D.B. Prosvirnikov, et al., Microcrystalline Cellulose Based on Cellulose Containing Raw Material Modified by Steam Explosion Treatment, Solid State Phenomena, 284 (2018) 773-778.
DOI: 10.4028/www.scientific.net/ssp.284.773
Google Scholar
[5]
V.A. Matsagar, Comparative performance of composite sandwich panels and non-composite panels under blast loading Materials and Structures, 49.1-2 (2016) 611-629.
DOI: 10.1617/s11527-015-0523-8
Google Scholar
[6]
H. Binici, O. Aksogan & C. Demirhan, Mechanical, thermal and acoustical characterizations of an insulation composite made of bio-based materials, Sustainable Cities and Society, 20 (2016) 17-26.
DOI: 10.1016/j.scs.2015.09.004
Google Scholar
[7]
N.F. Timerbaev, et al., IOP Conf. Ser.: Earth Environ. Sci. 87 (2017) 082047.
Google Scholar
[8]
Vladimir A. Saldaev et al., IOP Conf. Ser.: Mater. Sci. Eng. 142 (2016) 012097.
Google Scholar
[9]
T.N. Storodubtseva, et al., Thermal Insulation Properties of Wood Polymeric Sand Composite. Solid State Phenomena, 284 (2018) 986-992.
DOI: 10.4028/www.scientific.net/ssp.284.986
Google Scholar
[10]
D.B. Prosvirnikov, et al., IOP Conf. Ser.: Mater. Sci. Eng. 221 (2017) 012010.
Google Scholar
[11]
T.N. Storodubtseva, et al., The Study of Soundproofing Properties of Wood Polymer-Sand Composite, Solid State Phenomena 284 (2018) 993-998.
DOI: 10.4028/www.scientific.net/ssp.284.993
Google Scholar
[12]
V.G. Gusev, A.A. Fomin and A.R. Sadrtdinov, Adaptation of the Methodology of Designing Cylindrical Milling Processes to the Profile Milling Processes, Solid State Phenomena, 284 (2018) 236-241.
DOI: 10.4028/www.scientific.net/ssp.284.236
Google Scholar
[13]
V.V. Stepanov, N.F. Timerbaev, Composite Railroad Ties Obtained by the Energy Efficient Recycle of Wooden Railroad Ties. Solid State Phenomena, 284 (2018) 981-985.
DOI: 10.4028/www.scientific.net/ssp.284.981
Google Scholar
[14]
D.V. Tuntsev, et al., Multi-layer wood-polymer composite, Solid State Phenomena, 265 (2017) 47-52.
Google Scholar
[15]
I.A. Popov, A.V. Shchelchkov, Y.F. Gortyshov, et al., High Temp, 55.4 (2017) 524.
Google Scholar
[16]
D.V. Tuntsev, et al., Physical and Chemical Properties of Activated Lignocellulose and its Areas of Application, Solid State Phenomena, 284 (2018) 779-784.
DOI: 10.4028/www.scientific.net/ssp.284.779
Google Scholar
[17]
A.A. Fomin, V.G. Gusev, A.R. Sadrtdinov, Assurance of Accuracy of Longitudinal Section of Profile Surfaces Milled at High Feeds. In International Conference on Industrial Engineering, (2018) 527-536.
DOI: 10.1007/978-3-319-95630-5_55
Google Scholar
[18]
Almaz R. Sadrtdinov, et al., IOP Conf. Ser.: Mater. Sci. Eng. 142 (2016) 012095.
Google Scholar
[19]
Renata Porebska, et al., Polymer matrix influence on stability of wood polymer composites, Polymers for Advanced Technologies, 26.9 (2015) 1076-1082.
DOI: 10.1002/pat.3535
Google Scholar
[20]
V.G. Gusev, A.A. Fomin, Multidimensional Model of Surface Waviness Treated by Shaping Cutter, Procedia Engineering, 206 (2017) 286-292.
DOI: 10.1016/j.proeng.2017.10.475
Google Scholar
[21]
N.F. Timerbaev, D.F. Ziatdinova, R.G. Safin and A.R. Sadrtdinov, Gas purification system modeling in fatty acids removing from soapstock. Proceedings of 2017 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2017, (2017) 8076418.
DOI: 10.1109/icieam.2017.8076418
Google Scholar
[22]
S.A. Isaev, et al., Vortex heat transfer enhancement in the narrow plane-parallel channel with the oval-trench dimple of fixed depth and spot area, International Journal of Heat and Mass Transfer, 109 (2017) 40-62.
DOI: 10.1016/j.ijheatmasstransfer.2017.01.103
Google Scholar
[23]
R.R. Safin, et al., Research of the physical and energetic properties of the pellets based thermomodified raw wood, Russian Engineering Physics Journal, 88.4 (2015) 925-928.
Google Scholar
[24]
I.A. Popov, et al., Cooling systems for electronic devices based on the ribbed heat pipe, Russian Aeronautics (Iz VUZ), 58.3 (2015) 309-314.
DOI: 10.3103/s1068799815030101
Google Scholar
[25]
R.G. Safin, Z.G. Sattarova, E.R. Khairullina, Technology of wood waste processing to obtain construction material. Solid State Phenomena, 265 (2017) 245-249.
DOI: 10.4028/www.scientific.net/ssp.265.245
Google Scholar
[26]
I.V. Anisimova, Y.F. Gortyshov, V.N. Ignat'ev, Russ. Aeronaut, 59 (2016) 414.
Google Scholar
[27]
A.A. Fomin, et al., Geometrical Errors of Surfaces Milled with Convex and Concave Profile Tools, Solid State Phenomena, 284 (2018) 281-288.
DOI: 10.4028/www.scientific.net/ssp.284.281
Google Scholar
[28]
B.C. Roberts, M.E. Webber, O.A. Ezekoye, Development of a multi-objective optimization tool for selecting thermal insulation materials in sustainable designs Energy and Buildings, 105 (2015) 358-367.
DOI: 10.1016/j.enbuild.2015.07.063
Google Scholar
[29]
Z. Sun, Z. Shen, S. Ma, X. Zhang, Novel application of glass fibers recovered from waste printed circuit boards as sound and thermal insulation material Journal of materials engineering and performance, 22.10 (2013) 3140-3146.
DOI: 10.1007/s11665-013-0587-y
Google Scholar
[30]
L.M. Matuana, N.M. Stark, J.P. Wacker, B.K. Brashaw, R.D. Bergman, The use of wood fibers as reinforcements in composites Environmental Entomology, 44.3 (2015) 890-897.
Google Scholar
[31]
H. Binici & O. Aksogan, Eco-friendly insulation material production with waste olive seeds, ground PVC and wood chips, Journal of Building Engineering, 5 (2016) 260-266.
DOI: 10.1016/j.jobe.2016.01.008
Google Scholar
[32]
J. Merle, et al., New biobased foams from wood byproducts, Materials & Design, 91 (2016) 186-192.
DOI: 10.1016/j.matdes.2015.11.076
Google Scholar
[33]
P. Antoniadou, et al., Integrated evaluation of the performance of composite cool thermal insulation materials, Energy Procedia, 78 (2015) 1581-1586.
DOI: 10.1016/j.egypro.2015.11.214
Google Scholar
[34]
F. Balo, Feasibility study of green, insulation materials including tall oil: Environmental, economical and thermal properties Energy and Buildings, 86 (2015) 161-175.
DOI: 10.1016/j.enbuild.2014.09.027
Google Scholar
[35]
M.I. Aranguren, N.E. Marcovich & M.A. Mosiewicki, Mechanical performance of polyurethane (PU)-based biocomposites, Biocomposites, (2015) 465-485.
DOI: 10.1016/b978-1-78242-373-7.00010-x
Google Scholar