Strength Properties of Composite Board Materials Based on Ligno-Cellulose Fiber, Modified by Steam Explosion Treatment

Article Preview

Abstract:

The article presents the results of using activated lingo-cellulosic material, obtained by the method of steam explosion treatment, as the basis for the production of composite pressed boards without a binder. The influence of steam explosion treatment modes on the physical and chemical properties of the wood pulp product and the strength properties of the resulting board materials is considered.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

986-992

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.V. Stepanov, V.A. Saldaev, V.E. Tsvetkov, Composite Material for Railroad Tie. Solid State Phenomena, 265 (2017) 587-591.

DOI: 10.4028/www.scientific.net/ssp.265.587

Google Scholar

[2] D.B. Prosvirnikov, et al., IOP Conf. Ser.: Mater. Sci. Eng. 221 (2017) 012009.

Google Scholar

[3] Rahman, Khandkar Siddikur, et al., Flat-pressed wood plastic composites from sawdust and recycled polyethylene terephthalate (PET): physical and mechanical properties, SpringerPlus 2.1 (2013) 629.

DOI: 10.1186/2193-1801-2-629

Google Scholar

[4] D.B. Prosvirnikov, et al., Microcrystalline Cellulose Based on Cellulose Containing Raw Material Modified by Steam Explosion Treatment, Solid State Phenomena, 284 (2018) 773-778.

DOI: 10.4028/www.scientific.net/ssp.284.773

Google Scholar

[5] V.A. Matsagar, Comparative performance of composite sandwich panels and non-composite panels under blast loading Materials and Structures, 49.1-2 (2016) 611-629.

DOI: 10.1617/s11527-015-0523-8

Google Scholar

[6] H. Binici, O. Aksogan & C. Demirhan, Mechanical, thermal and acoustical characterizations of an insulation composite made of bio-based materials, Sustainable Cities and Society, 20 (2016) 17-26.

DOI: 10.1016/j.scs.2015.09.004

Google Scholar

[7] N.F. Timerbaev, et al., IOP Conf. Ser.: Earth Environ. Sci. 87 (2017) 082047.

Google Scholar

[8] Vladimir A. Saldaev et al., IOP Conf. Ser.: Mater. Sci. Eng. 142 (2016) 012097.

Google Scholar

[9] T.N. Storodubtseva, et al., Thermal Insulation Properties of Wood Polymeric Sand Composite. Solid State Phenomena, 284 (2018) 986-992.

DOI: 10.4028/www.scientific.net/ssp.284.986

Google Scholar

[10] D.B. Prosvirnikov, et al., IOP Conf. Ser.: Mater. Sci. Eng. 221 (2017) 012010.

Google Scholar

[11] T.N. Storodubtseva, et al., The Study of Soundproofing Properties of Wood Polymer-Sand Composite, Solid State Phenomena 284 (2018) 993-998.

DOI: 10.4028/www.scientific.net/ssp.284.993

Google Scholar

[12] V.G. Gusev, A.A. Fomin and A.R. Sadrtdinov, Adaptation of the Methodology of Designing Cylindrical Milling Processes to the Profile Milling Processes, Solid State Phenomena, 284 (2018) 236-241.

DOI: 10.4028/www.scientific.net/ssp.284.236

Google Scholar

[13] V.V. Stepanov, N.F. Timerbaev, Composite Railroad Ties Obtained by the Energy Efficient Recycle of Wooden Railroad Ties. Solid State Phenomena, 284 (2018) 981-985.

DOI: 10.4028/www.scientific.net/ssp.284.981

Google Scholar

[14] D.V. Tuntsev, et al., Multi-layer wood-polymer composite, Solid State Phenomena, 265 (2017) 47-52.

Google Scholar

[15] I.A. Popov, A.V. Shchelchkov, Y.F. Gortyshov, et al., High Temp, 55.4 (2017) 524.

Google Scholar

[16] D.V. Tuntsev, et al., Physical and Chemical Properties of Activated Lignocellulose and its Areas of Application, Solid State Phenomena, 284 (2018) 779-784.

DOI: 10.4028/www.scientific.net/ssp.284.779

Google Scholar

[17] A.A. Fomin, V.G. Gusev, A.R. Sadrtdinov, Assurance of Accuracy of Longitudinal Section of Profile Surfaces Milled at High Feeds. In International Conference on Industrial Engineering, (2018) 527-536.

DOI: 10.1007/978-3-319-95630-5_55

Google Scholar

[18] Almaz R. Sadrtdinov, et al.,  IOP Conf. Ser.: Mater. Sci. Eng. 142 (2016) 012095.

Google Scholar

[19] Renata Porebska, et al., Polymer matrix influence on stability of wood polymer composites, Polymers for Advanced Technologies, 26.9 (2015) 1076-1082.

DOI: 10.1002/pat.3535

Google Scholar

[20] V.G. Gusev, A.A. Fomin, Multidimensional Model of Surface Waviness Treated by Shaping Cutter, Procedia Engineering, 206 (2017) 286-292.

DOI: 10.1016/j.proeng.2017.10.475

Google Scholar

[21] N.F. Timerbaev, D.F. Ziatdinova, R.G. Safin and A.R. Sadrtdinov, Gas purification system modeling in fatty acids removing from soapstock. Proceedings of 2017 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2017, (2017) 8076418.

DOI: 10.1109/icieam.2017.8076418

Google Scholar

[22] S.A. Isaev, et al., Vortex heat transfer enhancement in the narrow plane-parallel channel with the oval-trench dimple of fixed depth and spot area, International Journal of Heat and Mass Transfer, 109 (2017) 40-62.

DOI: 10.1016/j.ijheatmasstransfer.2017.01.103

Google Scholar

[23] R.R. Safin, et al., Research of the physical and energetic properties of the pellets based thermomodified raw wood, Russian Engineering Physics Journal, 88.4 (2015) 925-928.

Google Scholar

[24] I.A. Popov, et al., Cooling systems for electronic devices based on the ribbed heat pipe, Russian Aeronautics (Iz VUZ), 58.3 (2015) 309-314.

DOI: 10.3103/s1068799815030101

Google Scholar

[25] R.G. Safin, Z.G. Sattarova, E.R. Khairullina, Technology of wood waste processing to obtain construction material. Solid State Phenomena, 265 (2017) 245-249.

DOI: 10.4028/www.scientific.net/ssp.265.245

Google Scholar

[26] I.V. Anisimova, Y.F. Gortyshov, V.N. Ignat'ev, Russ. Aeronaut, 59 (2016) 414.

Google Scholar

[27] A.A. Fomin, et al., Geometrical Errors of Surfaces Milled with Convex and Concave Profile Tools, Solid State Phenomena, 284 (2018) 281-288.

DOI: 10.4028/www.scientific.net/ssp.284.281

Google Scholar

[28] B.C. Roberts, M.E. Webber, O.A. Ezekoye, Development of a multi-objective optimization tool for selecting thermal insulation materials in sustainable designs Energy and Buildings, 105 (2015) 358-367.

DOI: 10.1016/j.enbuild.2015.07.063

Google Scholar

[29] Z. Sun, Z. Shen, S. Ma, X. Zhang, Novel application of glass fibers recovered from waste printed circuit boards as sound and thermal insulation material Journal of materials engineering and performance, 22.10 (2013) 3140-3146.

DOI: 10.1007/s11665-013-0587-y

Google Scholar

[30] L.M. Matuana, N.M. Stark, J.P. Wacker, B.K. Brashaw, R.D. Bergman, The use of wood fibers as reinforcements in composites Environmental Entomology, 44.3 (2015) 890-897.

Google Scholar

[31] H. Binici & O. Aksogan, Eco-friendly insulation material production with waste olive seeds, ground PVC and wood chips, Journal of Building Engineering, 5 (2016) 260-266.

DOI: 10.1016/j.jobe.2016.01.008

Google Scholar

[32] J. Merle, et al., New biobased foams from wood byproducts, Materials & Design, 91 (2016) 186-192.

DOI: 10.1016/j.matdes.2015.11.076

Google Scholar

[33] P. Antoniadou, et al., Integrated evaluation of the performance of composite cool thermal insulation materials, Energy Procedia, 78 (2015) 1581-1586.

DOI: 10.1016/j.egypro.2015.11.214

Google Scholar

[34] F. Balo, Feasibility study of green, insulation materials including tall oil: Environmental, economical and thermal properties Energy and Buildings, 86 (2015) 161-175.

DOI: 10.1016/j.enbuild.2014.09.027

Google Scholar

[35] M.I. Aranguren, N.E. Marcovich & M.A. Mosiewicki, Mechanical performance of polyurethane (PU)-based biocomposites, Biocomposites, (2015) 465-485.

DOI: 10.1016/b978-1-78242-373-7.00010-x

Google Scholar