Investigating of Nitric Acid Leaching of High-Sulfur Copper Concentrate

Article Preview

Abstract:

This article describes the problems of deterioration of the quality of processed raw materials due to depletion of mineral resources. It is proposed to use nitric acid for the processing of complex refractory low-grade concentrates containing non-ferrous and noble metals. It was found that the studied concentrate contains: sphalerite (26.9 %), pyrite (22.0 %), chalcopyrite (19.9 %), silica (13.9 %), alumina (5.5 %), galena (1.7 %), oxidized forms of iron (Fe2O3) (12 %). Gold and silver are associated with sulfide minerals. Typical reactions of interaction of these minerals with nitric acid are considered. A sufficiently high thermodynamic probability of these reactions in a wide temperature range is established. With the use of mathematical methods, the optimal conditions of the process of nitric acid leaching are selected: the ratio of L:S = 5:1; the concentration of nitric acid 10 mol/L; the duration of the process is 60 minutes. In this case, the extraction of copper, zinc, iron and sulfur into the solution was 99.00 %, 99.84 % 98.60 %, 88.51 %, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

968-973

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.S. Kozyrev, Nekotorye tendenzii razvitia syr'evoy bazy tsvetnoy metallurgii kapitelisticheskih i razvivayuschihsya stran, Tsvetnye metally, 12 (1991) 16-19.

Google Scholar

[2] B.V. Kolmogorchev, A.A. Varenichev, Problems of processing of poor and persistent gold-bearing ores. Mining Information Analytical Bulletin, 2 (2016) 204-218.

Google Scholar

[3] E. Peters, Hydrometallurgical process innovation, Hydrometallurgy, 29(1-3) (1992) 431-459.

DOI: 10.1016/0304-386x(92)90026-v

Google Scholar

[4] V.A. Ignatkina, Rational Processing of Refractory Copper-Bearing Ores, Russian Journal of Non-Ferrous Metals, 59(4,1) (2018) 364-373.

DOI: 10.3103/s1067821218040065

Google Scholar

[5] J. O. Marsden, C. lain House. The Chemistry of Gold Extraction, second ed., Macmillan, Littleon, (2006).

Google Scholar

[6] М.А. Meretukov, К.S. Sanakulov, А.V. Zimin, М.А. Arustamyan, Zoloto: himiya dlya metallurgov i obogatiteley, Мoscow: ID «Ruda i metally», (2014).

Google Scholar

[7] B.D. Paphane, B.B.M. Nkoanet, O.A. Oyetunjit, Kinetic studies on the leaching reactions in the autoclave circuit of the Tati Hydrometallurgical Demonstration Plant, Journal of the Southern African Institute of Mining and Metallurgy, 113(6) (2013) 485-489.

Google Scholar

[8] M. Hourn, Refractory leaching solutions, Australian Mining, 101(2) (2009) 20.

Google Scholar

[9] Ya.М. Shneerson, S.S. Naboichenko, Tendencii razvitiya avtoklavnoy gidrometallurgii tsvetnyh metallov, Tsvetnye metally,3 (2011) 15-20.

Google Scholar

[10] D. Dreisinger, Hydrometallurgical process development for complex ores and concentrates, Journal of the Southern African Institute of Mining and Metallurgy, 109 (2009) 253-271.

Google Scholar

[11] D.A. Rogozhnikov, S.V. Mamyachenkov, O.S. Anisimova, Nitric Acid Leaching of Copper-Zinc Sulfide Middlings, Metallurgist, 60(1-2) (2016) 229-233.

DOI: 10.1007/s11015-016-0278-7

Google Scholar

[12] D.A. Rogozhnikov, S.V. Mamyachenkov, S.V. Karelov, O.S. Anisimova, Nitric acid leaching of polymetallic middlings of concentration, Russian Journal of Non-Ferrous Metals, 54(6) (2013) 440-442.

DOI: 10.3103/s1067821213060242

Google Scholar

[13] C.G. Anderson, K.D. Harrison, L.E. Krys, Theoretical considerations of sodium nitrite oxidation and fine grinding in refractory precious-metal concentrate pressure leaching, Minerals and Metallurgical Processing, 13(1) (1996) 4-11.

DOI: 10.1007/bf03402709

Google Scholar

[14] G. Van Weert, K.J. Fair, J.C. Schneider, Prochem's NITROX Process, CIM Bulletin, 79(895) (1986) 84-85.

Google Scholar

[15] M.J.V. Beattie, A. Ismay, Applying the redox process to arsenical concentrates, JOM, 42(1) (1990) 31-35.

DOI: 10.1007/bf03220520

Google Scholar

[16] S.R. La Brooy, H.G. Linge, G.S. Walker, Review of gold extraction from ores, Minerals Engineering, 7 (1994) 1213-1241.

DOI: 10.1016/0892-6875(94)90114-7

Google Scholar

[17] М.А. Meretukov, Zoloto. Himiya. Minerologia. Metallurgia, Мoscow: ID «Ruda i metally», 2008, pp.226-242.

Google Scholar

[18] S.L. Chryssoulis, J. McMullen, Mineralogical investigation of gold ores, Developments in Mineral Processing, 15 (2005) 21-72.

DOI: 10.1016/s0167-4528(05)15002-9

Google Scholar

[19] S.S. Naboichenko, Ya.М. Shneerson, М.I. Kalashnikova, L.V. Chugaev, Avtoklavnaya gidrometallurgia tsvetnyh metallov, Т.1., Yekaterinburg: GOU VPO UGTU, UPI, (2009).

DOI: 10.1134/s1070427208120318

Google Scholar

[20] L. Jian, W. Shuming, L. Dan, L. Mengyang, Response surface methodology for optimization of copper leaching from a lowgrade flotation middling, Minerals and Metallurgical Processing, 3 (2011) 139-145.

Google Scholar