Arsenic Precipitation from Solutions in Autoclave-Hydrometallurgical Technology of Processing Sulphide Concentrates

Article Preview

Abstract:

Currently, the share of gold extracted from technologically simple gold ores is steadily decreasing, which determines the involvement in the processing of refractory gold ores containing finely disseminated gold and silver in sulfides, mainly in pyrites and arsenopyrites. Autoclave oxidation is a promising method of pretreatment of the refractory sulfide-arsenic gold-bearing raw materials before cyanidation. A serious problem of auriferous ores autoclave-hydrometallurgical processing is the removal of contained arsenic into relatively harmless and capable of being kept forms. This article shows the results of behavior of arsenic during the neutralization of solid after autoclave oxidative leaching of refractory gold-containing materials.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

980-985

Citation:

Online since:

January 2020

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.K. Koizhanova, L.L. Osipovskaya, M.B. Erdenova, Study of precious metals extraction recovery from technogenic wastes. 12th International Multidisciplinary Scientific Geo Conference-SGEM. 1 (2012) 843-846.

DOI: 10.5593/sgem2012/s03.v1059

Google Scholar

[2] M.S. Melnichuk, S.B. Fokina, A.Ya. Boduen, G.V. Petrov, Co-recovery of platinum-group metals and chrome in processing of low-grade dunite ore material. Obogashchenie Rud. 1 (2018) 50-55.

DOI: 10.17580/or.2018.01.09

Google Scholar

[3] L.I. Gurskaya, D.A. Dodin, Mineral resources of platinum group metals in Russia: expansion prospects. Regionalnaya Geologiya i Metallogeniya, 64 (2015) 84-93.

Google Scholar

[4] A.A. Petukhov, A.A. Dar'in, N.M. Telyakov, Processing of Ferromanganese Nodules of the Pacific Ocean. Metallurgist, 61 (5-6) (2017) 439-443.

DOI: 10.1007/s11015-017-0514-9

Google Scholar

[5] G.V. Petrov, A.Ya. Boduen, S.B. Fokina, A.A. Popov, Chemical concentration of steelmaking dusts. Chernye Metally, 10 (2016) 65-68.

Google Scholar

[6] A.A. Daryin, A.V. Maksimova, A.N. Telyakov, A.M. Fuks, Study of silicate bacterial destructive effect on quartziferous ores. Obogashchenie Rud. 4 (2015) 8-12.

DOI: 10.17580/or.2015.04.02

Google Scholar

[7] D.C. Harris, The Mineralogy of gold and its relevance to gold recoveries. Fundamental Aspects of Gold Deposits. 25 (1990) 3-7.

DOI: 10.1007/bf00205243

Google Scholar

[8] M.D. Adams (ed.), Advances in gold ore processing. Elsevier Science, (2005).

Google Scholar

[9] V.S. Chekushin, N.V. Oleynikova, Pererabotka zolotosoderzhashchikh rudnykh kontsentratov (obzor metodov) [Processing of gold ore concentrates (overview of methods)]. Izvestiya Chelyabinskogo nauchnogo tsentra [Proceedings of the Chelyabinsk Scientific center], 4(30) (2005) 94-110.

Google Scholar

[10] K.S. Fraser, R.H. Walton, J.A. Wells, Processing of refractory gold ores. Minerals Engineering. 4(7-11) (1991) 1029-1041.

DOI: 10.1016/0892-6875(91)90081-6

Google Scholar

[11] G.V. Petrov, A.Ya. Boduen, B.S. Ivanov, M.A. Serebryakov, Investigation of ammonia autoclave leaching of silver and rhenium containing ill-conditioned copper concentrate. Tsvetnye Metally. 10 (2016) 23-28.

DOI: 10.17580/tsm.2016.10.03

Google Scholar

[12] J.C. Yannopoulos. Treatment of Refractory Gold Ores. In: The Extractive Metallurgy of Gold. Springer, Boston, MA. (1991) 79-114.

DOI: 10.1007/978-1-4684-8425-0_5

Google Scholar

[13] S.S. Nabojchenko, Y.M. Shneerson, M.I. Kalashnikova, L.V. Chugaev. Avtoklavnaja gidrometallurgija cvetnyh metallov [Autoclaved hydrometallurgy of non-ferrous metals]. Ekaterinburg: GOU UGTU-UPI, (2009).

Google Scholar

[14] Z. Zhao, Y. Jia, L. Xu, S. Zhao. Adsorption and heterogeneous oxidation of As(III) on ferrihydrite. Water Res. 45 (2011) 6496-6504.

DOI: 10.1016/j.watres.2011.09.051

Google Scholar

[15] M.A. Sánchez, F. Vergara, S.H. Castro, The removal of arsenic from hydrometallurgical process and effluent streams. University of Concepción. (2000).

Google Scholar

[16] R.G. Robins, V. Kudryk, D.A. Corrigan, W.W. Liang The Stability of arsenic in gold mine processing wastes. Precious metals: Mining, extraction and processing. TMS-AIME. (1984) 241-249.

Google Scholar

[17] D. Zhang, Z. Yuan, S. Wang, Y. Jia and G.P. Demopoulos, Incorporation of Arsenic into Gypsum: Relevant to Arsenic Removal and Immobilization Process inHydrometallurgical Industry. Journal of Hazardous Materials. 300 (2015) 272-280.

DOI: 10.1016/j.jhazmat.2015.07.015

Google Scholar

[18] N.N. Golovnev, M.B. Egizaryan. Rastvorimost' arsenata kal'tsiya v karbonatnykh rastvorakh [The solubility of calcium arsenate in carbonate solutions]. Zhurnal neorganicheskoy khimii [Journal of Inorganic Chemistry]. 1(39) (1994) 37-39.

Google Scholar

[19] G.P. Demopoulos, D.J. Droppert, G.Van Weert, B. Harris and E. Krause. Option for the immobilization of arsenic as crystalline scorodite. Impurity Control and Disposal in Hydrometallurgical Processes. CIM, Montreal. (1994) 57-69.

Google Scholar

[20] G.V. Petrov, S.B. Fokina, A.Y. Boduen, I.E Zotova, B.F. Fidarov. Arsenic behavior in the autoclave-hydrometallurgical processing of refractory sulfide gold-platinum-bearing products. International Journal of Engineering and Technology(UAE). 7 (2.2) (2018) 35-39.

DOI: 10.14419/ijet.v7i2.2.9897

Google Scholar