New Chemical Fibers Obtained from Wood, Activated by Steam Explosion Treatment

Article Preview

Abstract:

The article presents resource and energy saving environmentally friendly technology for efficient processing of wood waste (chipped wood, sawdust) into chemical fibers, such as lyocell type, compatible with the entire spectrum of natural and synthetic fibers, as well as having stable durability and reliability in the manufactured materials. The optimal parameters of the NMMO solvent were determined to achieve the minimum viscosity of the spinning solution. It has been given that it can be used for wear of the materials produced. The spinning solution was chosen for the NMMO solvent.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

1017-1023

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.B. Prosvirnikov, E.I. Baigildeeva, A.R. Sadrtdinov and A.A. Fomin, Modelling heat and mass transfer processes in capillary-porous materials at their grinding by pressure release. Proceedings of 2017 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2017, (2017) 8076443.

DOI: 10.1109/icieam.2017.8076443

Google Scholar

[2] I.V. Anisimova, Y.F. Gortyshov, V.N. Ignat'ev, Russ. Aeronaut, 59 (2016) 414.

Google Scholar

[3] L.K. Gujjala, T.K. Bandyopadhyay, R. Banerjee, Kinetic modelling of laccase mediated delignification of Lantana camara. Bioresource technology, 212 (2016) 47-54.

DOI: 10.1016/j.biortech.2016.04.006

Google Scholar

[4] E.P. Dagnino, et al., Optimization of the soda-ethanol delignification stage for a rice husk biorefinery, Industrial Crops and Products, 97 (2017) 156-165.

DOI: 10.1016/j.indcrop.2016.12.016

Google Scholar

[5] S.K. Dutta, G. Halder, M.K. Mandal, Modeling and optimization of bi-directional delignification of rice straw for production of bio-fuel feedstock using central composite design approach. Energy, 71 (2014) 579-587.

DOI: 10.1016/j.energy.2014.04.108

Google Scholar

[6] D.B. Prosvirnikov, et al., Modeling of delignification process of activated wood and equipment for its implementation. IOP Conf. Ser.: Mater. Sci. Eng.  221.1 (2017) 012009.

DOI: 10.1088/1757-899x/221/1/012009

Google Scholar

[7] M. Karimi, R. Esfandiar, D. Biria, Simultaneous delignification and saccharification of rice straw as a lignocellulosic biomass by immobilized Thrichoderma viride sp. to enhance enzymatic sugar production. Renewable Energy, 104 (2017) 88-95.

DOI: 10.1016/j.renene.2016.12.012

Google Scholar

[8] N.F. Timerbaev, D.F. Ziatdinova, R.G. Safin and A.R. Sadrtdinov, Gas purification system modeling in fatty acids removing from soapstock, Proceedings of 2017 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2017, (2017) 8076418.

DOI: 10.1109/icieam.2017.8076418

Google Scholar

[9] J. Susilo, C.P.J. Bennington, Modelling kappa number and pulp viscosity in industrial oxygen delignification systems. Chemical Engineering Research and Design, 85.6 (2007) 872-881.

DOI: 10.1205/cherd06167

Google Scholar

[10] D.V. Tuntsev, et al., The mathematical model of fast pyrolysis of wood waste, Proceedings of 2015 International Conference on Mechanical Engineering, Automation and Control Systems, MEACS 2015. (2015) 7414929.

DOI: 10.1109/meacs.2015.7414929

Google Scholar

[11] T. Salmi, J. Wärn, J.P. Mikkola, M. Rönnholm, Modelling and simulation of porous, reactive particles in liquids: delignification of wood. Computer Aided Chemical Engineering, 20 (2005) 325-330.

DOI: 10.1016/s1570-7946(05)80176-2

Google Scholar

[12] A. Vega, M. Bao, J. Lamas, Application of factorial design to the modelling of organosolv delignification of Miscanthus sinensis (elephant grass) with phenol and dilute acid solutions. Bioresource technology, 61.1 (1997) 1-7.

DOI: 10.1016/s0960-8524(96)00056-9

Google Scholar

[13] A.R. Sadrtdinov, et al.,  IOP Conf. Ser.: Mater. Sci. Eng. 124 (2016) 012092.

Google Scholar

[14] V.G. Gusev, A.A. Fomin and A.R. Sadrtdinov, Dynamics of Stock Removal in Profile Milling Process by Shaped Tool. Procedia Engineering 206 (2017) 279-285.

DOI: 10.1016/j.proeng.2017.10.474

Google Scholar

[15] G.J.M. Rocha, et al., Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production, Industrial Crops and Products, 35.1 (2012) 274-279.

DOI: 10.1016/j.indcrop.2011.07.010

Google Scholar

[16] D.B. Prosvirnikov, et al., IOP Conf. Ser.: Mater. Sci. Eng. 221 (2017) 012010.

Google Scholar

[17] G. Marton, et al., Modelling of biomass fractionation by prehydrolysis-delignification, Chemical engineering science, 43.8 (1988) 1807-1812.

DOI: 10.1016/0009-2509(88)87045-3

Google Scholar

[18] M. Huron, D. Hudebine, N.L. Ferreira, D. Lachenal, Impact of delignification on the morphology and the reactivity of steam exploded wheat straw. Industrial Crops and Products, 79 (2016) 104-109.

DOI: 10.1016/j.indcrop.2015.10.040

Google Scholar

[19] V.V. Stepanov et al., Composite Material for Railroad Tie", Solid State Phenomena, 265 (2017) 587-591.

DOI: 10.4028/www.scientific.net/ssp.265.587

Google Scholar

[20] C.A. Hubbell, A.J. Ragauskas, Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresource Technology, 101.19 (2010) 7410-7415.

DOI: 10.1016/j.biortech.2010.04.029

Google Scholar

[21] I.A. Popov, A.V. Shchelchkov, Y.F. Gortyshov, et al., High Temp 55.4 (2017) 524.

Google Scholar

[22] P.C. Pinto, et al., Kraft delignification of energy crops in view of pulp production and lignin valorization, Industrial Crops and Products, 71 (2015) 153-162.

DOI: 10.1016/j.indcrop.2015.03.069

Google Scholar