Studies on Microwave-Plasma Treatment of Froth Flotation Tailings

Article Preview

Abstract:

An efficient technology is currently being searched for the processing of aged enrichment gold-containing tailings at the «Solton-Sary» enrichment plant, Kyrgyzstan. In this paper, the effect of microwave-plasma exposure on aged tailings and further gold extraction using froth flotation were investigated. Microwave-plasma treatment of the material was carried out in the presence of the following materials: charcoal, coal/quartz and molybdenum sulfide. Microwave-plasma treatment allowed to improve the quality of flotation concentrates in terms of the gold content from 130 ppm to 227 ppm. The design of plasmatron and methodology of plasma treatment were proposed. The results shown in this paper are valuable for mining organization in terms of searching for new industrial waste processing approaches and for broadening their raw materials base.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

1044-1051

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.N. Aleksandrova, I.Yu.Rasskazov, A Study of the Effects of Energy Deposition on High-carbon Rocks Benefication Products, IX Kongress obogatiteley stran SNG. Sbornik materialov t.1. (2013) 60-63.

Google Scholar

[2] G.R. Bochkarev, Yu.P. Veygelt, V.I. Rostovtsev, Phase Transformations of Sulphide Complexes under Radiation and Thermal Treatment, Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 1 (2000) 94-101.

Google Scholar

[3] G.R. Bochkarev, V.I. Rostovtsev, Yu.P. Veygelt et al., Prospect of Using Accelerated Electrons in Primary Processing of Ores, Novyye protsessy v kombinirovannykh skhemakh obogashcheniya poleznykh iskopayemykh. Nauka, Moscow, 1989, pp.175-183.

Google Scholar

[4] I.Zh. Bunin, N.S. Bunina, V.A. Vdovin, P.S. Voronov, Yu.V. Gulyayev, A.B. Korzhenevskiy, V.D. Lunin, V.A. Chanturiya, V.A. Cherepenin, Experimental Study of Non-thermal Impact of Strong Electromagnetic Impulses on Gold-bearing Rocks, Izvestiya AN. 12 (2001) 1788-1792.

DOI: 10.1023/a:1014284926395

Google Scholar

[5] Yu.A. Guskov, Yu.I. Zotser, G.S. Nus, Ye.V. Ratnikov, Using UHF Heating for Concentration of Nickel Ores, Fiziko-tekhnicheskiye problemy obogashcheniya poleznykh iskopayemykh. 1 (1993) 110-117.

Google Scholar

[6] T.A. Ivanova, I.Zh. Bunin, I.A. Khabarova, Chemical Modification of Surface Sulphides Treated with Strong Electromagnetic Impulses, Gornyy informatsionno-analiticheskiy byulleten. 5 (2008) 342-350.

Google Scholar

[7] A.K. Kozhonov, Technological Aspect of Using Kyrgyz Republic Mining Industry Waste for Processing, Izvestiya Kyrgyzskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. I.Razzakova, 28 (2013) 270-274.

Google Scholar

[8] A.K. Kozhonov, K.A. Nogaeva, M.S. Molmakova, Overview and Classification of Kyrgyz Republic Ore Fields' Industrial Wastes, Izvestiya Kyrgyzskogo gosudarstvennogo tekhnicheskogo universiteta im. I.Razzakova. 39 (2016) 259-263.

Google Scholar

[9] Ye.A. Koshel, G.S. Krylova, G.V. Sedelnikova, P.L. Ananyev, V.I. Solovyev, More Effective Disintegration of Gold-bearing Rocks by Energy Impacts, Gornyy informatsionno-analiticheskiy byulleten. 11 (2004) 229-231.

Google Scholar

[10] Zh.S. Meimanova, A.K. Kozhonov, K.A. Nogaeva, M.S. Molmakova, A Study of Technological Properties of Solton-Sary Plant Mature Mine Refuse, Tekhnicheskiye nauki - ot teorii k praktike. 12 (2016) 51-55.

Google Scholar

[11] Zh.S. Meimanova, K.A. Nogaeva, G.M. Almakuchukova, A Study of Gravitational Dressability of Solton Sary Deposits, Nauchno-obrazovatelnyy i proizvodstvennyy zhurnal «Inzhener»: Mineralnyye resursy, podgotovka inzhenernykh kadrov i problemy osvoyeniya nedr Kyrgyzskoy Respubliki. 9 (2015) 306-311.

Google Scholar

[12] I.N. Plaksin, R.Sh. Shafeyev, V.A. Chanturiya, The Relationship between Energy Structure of Mineral Crystals and their Flotation Properties, Izbrannyye trudy. Obogashcheniye poleznykh iskopayemykh. Nauka, Moscow, 1970, pp.136-147.

Google Scholar

[13] V.A. Chanturiya, Advanced Minerals Comprehensive Processing Technologies, Ruda i Metally, Moscow, (2008).

Google Scholar

[14] Ch. Pul, F. Ouene, Nanotechnologies, Tekhnosfera, Moscow, (2007).

Google Scholar

[15] S. Dzh. B. Rid, Electron Probe Microanalysis and Raster Electron Microscopy in Geology, Tekhnosfera, Moscow, (2008).

Google Scholar

[16] M.V. Ryazantseva, The Mechanism of Influence of the Nanosecond Electromagnetic Impulses on Chemical Structural and Flotation Properties of Pyrite and Arsenopyrite, Dissertatsiya. kand. tekhn. nauk, Moscow, (2009).

Google Scholar

[17] A.A. Samsaliev, A.P. Muslimov, M.B. Batkibekova, Kyrgyztan patent 1632. (2014).

Google Scholar

[18] Yu. N. Tumanov, D.Yu. Tumanov, Plasma Technology in Creating the New Appearance of Industrial Production in the XXI Century, Novyye promyshlennyye tekhnologii. 1 (2006) 14-28.

Google Scholar

[19] Ye.V. Urusova, Studies of Influence of the UHF Radiation on Extraction of Metals from Minerals, Avtoreferat, Tashkent, (2003).

Google Scholar

[20] A.B. Khvan, V.G. Kolesnik, G.S. Sattarov, V. E. Latyshev, E.V. Urusova, A Study of the Possibility to Use the UHF Field for Preparation of Ore in Gold Production, Gornyy vestnik Uzbekistana. 2 (2002) 56-60.

Google Scholar

[21] V.A. Chanturiya, Opening Refractory Gold-bearing Ores by Strong Electromagnetic Impulses, DAN. 5 (1999).

Google Scholar

[22] V.A. Chanturiya, I.Zh. Bunin, Non-traditional Energy Methods of Selective Disintegration of Fine Mineral Aggregates of Noble Metals, Novyye tekhnologii v nauke o zemle. Materialy Vserossiyskoy nauchno-prakticheskoy konferentsii. (2013) 127-134.

Google Scholar

[23] V.A. Chanturiya, I.Zh. Bunin, T.A. Ivanova, T.A. Nedosekina, A Study of the Influence of Pulsed Power Impacts on Physical and Chemical Properties of Surfaces of Sulphide Minerals and Concentration Products, Gornyy informatsionno-analiticheskiy byulleten, (8) 2005 313-319.

Google Scholar

[24] A.V. Badenikov, V.Ya. Badenikov, Energy Deposition on Flotation Components, Izd-vo Moskovskogo gos. gornogo un-ta. (2010).

Google Scholar

[25] R.K. Yafarov, Unbalanced UHF Low-pressure Plasma in Scientific Research and Development in Micro- and Nanoelectronics, Izvestiya Saratovskogo universiteta. Novyye serii. 2 (2015) 18-31.

Google Scholar

[26] G.E. Agar, Flotation of chalcopyrite, pentlandite, pyrrhotite ores, Flotation of sulphide minerals (1991) 1-19.

DOI: 10.1016/0301-7516(91)90039-l

Google Scholar

[27] U. Andres, J. Jirestig, I. Timoshkin, Liberation of Minerals by High Voltage Electrical Pulses, Powder Technology. 1 (1999) 37-49.

DOI: 10.1016/s0032-5910(99)00024-8

Google Scholar

[28] G.R. Bochkarev, V.A. Chanturiya, V.E. Vigdiergauz, V.D. Eunin, Prospects of electron accelerators used for realizing effective low-cost technologies of mineral processing, Proceeding of XX International Mineral Processing Congress. 1 (1997) 231-243.

Google Scholar

[29] V.A. Chanturiya, Innovation processes in technologies for the processing of refractory mineral raw materials, Geology of Ore Deposits. 6 (2008) 491-501.

DOI: 10.1134/s107570150806007x

Google Scholar

[30] V.A. Chanturiya, I.Zh. Bunin, V.D. Lunin, Yu.V. Gulyaev, N.S. Bunina, V.A. Vdovin, P.S. Voronov, A.V. Korzhenevskii, V.A. Cherepenin, Use of high-power electromagnetic pulses in processes of disintegration and opening of rebellious gold-containing raw material, Journal of Mining Science. 37 (2001) 427-437.

DOI: 10.1023/a:1014284926395

Google Scholar

[31] K.E. Haque, Microwave energy for mineral treatment processes a brief review, Int. J. Miner. Process. 57 (1999) 1-24.

Google Scholar

[32] R. Henda, A. Hermas, R. Gedye, M. Islam, Microwave enhanced recovery of nickel-copper ore: communition and floatability aspects, Journal of Microwave Power Electromagnetic Energy. 1 (2005) 7-16.

DOI: 10.1080/08327823.2005.11688522

Google Scholar

[33] S. Kingman, Recent Developments in Microwave Processing of Minerals, International Materials Reviews. 1 (2006) 1-12.

Google Scholar

[34] S. Kingman, K. Jackson, A. Cumbane, S. Bradshaw, N. Rowson, R. Greenwood, Recent Developments in Microwave-Assisted Comminution, International Journal of Mineral Processing. 1-4 (2004) 71-83.

DOI: 10.1016/j.minpro.2003.09.006

Google Scholar

[35] S. Kingman, N. Rowson, Microwave Treatment of Minerals. A Review, Minerals Engineering. 11 (1998) 1081-1087.

DOI: 10.1016/s0892-6875(98)00094-6

Google Scholar