Pressure Leaching of Chalcopyrite Concentrate: Iron Removal from Leaching Residues

Article Preview

Abstract:

Autoclave oxidative leaching is one of the most promising hydrometallurgical approaches for copper suplhide materials processing. In previous studies [2–4], the possibility of an efficient autoclave treatment of chalcopyrite concentrate was confirmed. The concentrate has the following chemical composition, %: 21.5 Cu, 0.1 Zn, 26.5 S, 24.5 Fe, 0.05 Pb, 0.04 Ni, 16.2 SiO2 [1]. At high temperature conditions (190–200 °C; 4–6 bar) in sulfuric-acid media during 100–120 min about 98% Cu was extracted. A leaching residue after POX (POX-cake) contained the following compounds, %: 55 Fe2O3, 40 SiO2, 4 MeS2/MeS. Current paper presents the results on purification of POX-cakes from iron by autoclave treatment. Futher ways for by-products (SiO2-cake and FeSO4-solution) processing are sugested.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

1052-1057

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.A. Altushkin, А.Е. Cherepovitsin, J.А. Korol, Practical implementation of the mechanism of sustainable development in the creation and formation of the mining and metallurgical holding of the copper industry in Russia, Publishing house «Ore and Metals», Moscow, (2016).

Google Scholar

[2] A.V. Kritskii, К.А. Karimov, S.S. Naboichenko, High-temperature leaching of chalcopyrite concentrate, Conference proceedings of IX international congress «Non-ferrous metals and minerals 2017», Krasnoyarsk, Russia, 1 (2017) 1089–1091.

Google Scholar

[3] A.V. Kritskii, K.A. Karimov, S.S. Naboichenko, Low-temperature leaching of chalcopyrite concentrate, Conference proceedings of IX international congress «Non-ferrous metals and minerals 2017», Krasnoyarsk, Russia, 1 (2017) 1081–1083.

Google Scholar

[4] A.V. Kritskii, K.A. Karimov, S.S. Naboichenko, Pressure leaching of chalcopyrite concentrate, International seminar on metallurgy and materials (ISMM 2017), AIP Conference Proceedings 1964, 020048 (2018).

DOI: 10.4028/www.scientific.net/ssp.299.1052

Google Scholar

[5] Information on http://www.bhpbilliton.com/home/investors/reports/Documents/ 2012/ 1210 01 _ Escondida%20Site%20Visit% 20Presentation.pdf.

Google Scholar

[6] Mudd, G.M., The environmental sustainability of mining in Australia: key mega- trends and looming constraints, Resour, 1 (2010) 98–115.

DOI: 10.1016/j.resourpol.2009.12.001

Google Scholar

[7] Information on http://www.indexmundi.com/en/commodities/minerals/copper/copper_t20. html.

Google Scholar

[8] Information on http://www.indexmundi.com/en/commodities/minerals/copper/copper_t40. html.

Google Scholar

[9] D. Dreisinger, Copper leaching from primary sulfides: options for biological and chemical extraction of copper, Hydrometallurgy 83 (2006) 10–20.

DOI: 10.1016/j.hydromet.2006.03.032

Google Scholar

[10] R. Padilla, D. Vega, M.C. Ruiz, Pressure leaching of sulfidized chalcopyrite in sulfuric acid-oxygen media, Hydrometallurgy 86 (2007) 80–88.

DOI: 10.1016/j.hydromet.2006.10.006

Google Scholar

[11] S. Wang, Copper leaching from chalcopyrite concentrates, Copper and Nickel production (Overview), JOM, (2005) 48–51.

DOI: 10.1007/s11837-005-0252-5

Google Scholar

[12] F.P. Haver, M.M. Wong, Recovery of copper, iron, and sulfur from chalcopyrite concentrate using a ferric chloride ceach, J. Metals, 23 (2) (1971) 25–29.

DOI: 10.1007/bf03355683

Google Scholar

[13] T.A. Phillips, Economic evaluation of a process for ferric chloride leaching of chalcopyrite concentrate, BuMines IC, 8699 (1976) 22.

Google Scholar

[14] R. Romero, A. Mazuelos, I. Palencia, F. Carranza, Copper Recovery from Chalcopyrite Concentrates by the BRISA Process, Hydrometallurgy 70 (2003) 205–215.

DOI: 10.1016/s0304-386x(03)00081-1

Google Scholar

[15] M. Liyuan, W. Xingjie, L. Xueduan, W. Shanquan, W. Hongmei. Intensified bioleaching of chalcopyrite by communities with enriched ferrous or sulfur oxidizers, Bioresource Technology, 268 (2018) 415–423.

DOI: 10.1016/j.biortech.2018.08.019

Google Scholar

[16] J. Peacey, X. Guo, E. Robles, Copper hydrometallurgy — current status, preliminary economics, future direction and positioning versus smelting, Trans. Nonferrous Met. Soc. (2003) 560–568.

Google Scholar

[17] Plotinskaya O., Azovskova O., Abramov S., Groznovaa E., Novoselov K., Seltmann R., Spratt J. Precious metals assemblages at the Mikheevskoe porphyry copper deposit (South Urals, Russia) as proxies of epithermal overprinting. Ore Geology Reviews 94 (2018) 239–260.

DOI: 10.1016/j.oregeorev.2018.01.025

Google Scholar

[18] O'Malley, M.L., Liddell, K.C. Leaching of CuFeS2 by aqueous FeCl3, HCl and NaCl: effects of solution composition and limited oxidant. Metallurgical Transactions B 18 (1987) 505–510.

DOI: 10.1007/bf02654262

Google Scholar

[19] Schippers, A., Hedrich, S., Vasters, J., Drobe, M., Sand, W., Willscher, S., 2014. Biomining: metal recovery from ores with microorganisms. In: Schippers, A., Glombitza, F., Sand, W. (Eds.), Geobiotechnology I – Metal-related Issues. Advances in Biochemical Engineering & Biotechnology, vol. 141 Springer, Heidelberg.

DOI: 10.1007/10_2013_216

Google Scholar

[20] Watling, H.R. Chalcopyrite hydrometallurgy at atmospheric pressure: 2. Review of acidic chloride process options. Hydrometallurgy 146 (2014) 96–110.

DOI: 10.1016/j.hydromet.2014.03.013

Google Scholar

[21] Naboichenko, S.S., Ni, L., Shneerson, Y, Chugaev, L. Autoclave hydrometallurgy of non-ferrous metals. 2nd ed. Naboichenko S, editor. Yekaterinburg: GOU Ural State Polytechnic University - UPI; (2002).

DOI: 10.1134/s1070427208120318

Google Scholar