[1]
S.S. Djokić, Electrochemical Production of Metal Powders, Springer Science+Business Media New York, (2012).
Google Scholar
[2]
T.D. Golden, M.G. Shumsky, Ya. Zhou, R.A. Vander Werf, R. A. Van Leeuwen, J.A. Switzer, Electrochemical Deposition of Copper(I) Oxide Films, Chemistry of Materials 8 (1996) 2499-2504.
DOI: 10.1021/cm9602095
Google Scholar
[3]
S.S. Djokic, Cavallotti Electroless deposition: theory and applications. Springer, New York, 2010, pp.251-289.
Google Scholar
[4]
M.I. Alymov, V.S. SHustov, L.S. Ustyuhin, E.V. Evstratov, The ratio between the quality of nanopowders and the performance of their production methods. Kompozity i nanostruktury-Composites and Nanostructures, 3 (2012) 3-9.
Google Scholar
[5]
Z.H. Zhang, F.C. Wang, L. Wang, S.K. Li, M.W. Shen, S. Osamu, Microstructural characteristics of large-scale ultrafine-grained copper. Materials Characterization, 59(3) 2008, 329-333.
DOI: 10.1016/j.matchar.2007.06.014
Google Scholar
[6]
M. Uda, Production of ultrafine metal and alloy powders by hydrogen thermal plasma. Nanostructured Materials, 1(1) (1992) 101–106.
DOI: 10.1016/0965-9773(92)90060-b
Google Scholar
[7]
Y.A. Kotov, Electric Explosion of Wires as a Method for Preparation of Nanopowders. Journal of Nanoparticle Research, 5(5/6) (2003) 539-550.
DOI: 10.1023/b:nano.0000006069.45073.0b
Google Scholar
[8]
Z.-H. Zhang, F.-C. Wang, L. Wang, S.-K. Li, Ultrafine-grained copper prepared by spark plasma sintering process. Materials Science and Engineering: A, 476(1-2) (2008) 201-205.
DOI: 10.1016/j.msea.2007.04.107
Google Scholar
[9]
B. Faure, G. Salazar-Alvarez, A. Ahniyaz, I. Villaluenga, G. Berriozabal, Yo.R.De Miguel, L. Bergstrom, Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. Science and technology of advanced materials, 14 (2013).
DOI: 10.1088/1468-6996/14/2/023001
Google Scholar
[10]
J. Virkutyte, R.S. Varma Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chemical Science, 2 (2011) 837-846.
DOI: 10.1039/c0sc00338g
Google Scholar
[11]
C. Lourenco, M. Teixeira, S. Simoes, R. Gaspar, Steric stabilization of nanoparticles: size and surface properties. International Journal of Pharmaceutics. 138 (1996) 1-12.
DOI: 10.1016/0378-5173(96)04486-9
Google Scholar
[12]
N. Sharma, P. Madan, S. Lin, Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian Journal of Pharmaceutical Sciences. 2015, pp.1-13.
DOI: 10.1016/j.ajps.2015.09.004
Google Scholar
[13]
A.M. Timonov, S.V. Vasil'eva, Electronic conductivity of polymer compounds, Sorosovskij obrazovatel'nyj zhurnal - Soros educational journal, T. 6, V.3 (2000) 33-39.
Google Scholar
[14]
S.M. Aldoshin, G.I. Dzhardimalieva, A.D. Pomogailo, Yu.A. Abuzin, Reactivity of metal-containing monomers 71. Synthesis of nanosized quasicrystals and related metallopolymer composites Russian Chemical Bulletin. Т. 60. V. 9. (2011) 1871-1879.
DOI: 10.1007/s11172-011-0282-9
Google Scholar
[15]
S.V. Panin, L.A. Kornienko, L.R. Ivanova, S. Vannasri, S. Piriyaon, T. Puvadin, S.V. Shil'ko Comparison of the efficiency of modification of SHMPE by nanofibers (C, Al2O3) and nanoparticles (Cu, SiO2) when obtaining antifriction composites. Journal of Friction and Wear. Т. 31. V. 6. (2010) 460-468.
DOI: 10.3103/s1068366610060097
Google Scholar
[16]
G.A. Danyushina, Yu.M. Berezhnoj, V.M. Lipkin, P.D. Derlugyan, V.G. SHishka, O.N. Goncharova, N.V. SHishka, Properties of copper nanosized powders stabilized by water-soluble polymers in the production process. Inzhenernyj vestnik Dona - Engineering Journal of Don., V. 3 (2016). Available at: http://www.ivdon.ru/ru/magazine/archive/n3y2016/3723). (accessed 20.07.2018).
Google Scholar
[17]
M.Yu. Berezhnaya, Obtaining of ultradispersed powders of copper, stable water-soluble polymers, antifriction metal-polymer materials. The dissertation on competition of a scientific degree of candidate of technical Sciences, South-Russian state Polytechnic University (NPI). M. I. Platov. Novocherkassk, (2015).
DOI: 10.17580/or.2019.05.07
Google Scholar
[18]
A.V. Goryainova, G.K. Bozhkov, M.S. Tihonova, The fluoroplastics in machine building. Moscow, mechanical engineering (1971).
Google Scholar
[19]
A.A. Ohlopkova, P.N. Petrova, S.N. Popov, S.A. Slepcova, Polymer composite materials of tribotechnical purpose based on polytetrafluoroethylene. Rossijskij himicheskij zhurnal ZHurnal Rossijskogo himicheskogo obshchestva im. D. I. Mendeleeva, Russian journal of organic chemistry journal of the Russian chemical society. D. I. Mendeleev., T. LII, V 3 (2008) 147-152.
Google Scholar