Influence of Polyelectrolytes on the Processes of Structure Formation of Copper Powders

Article Preview

Abstract:

The results of the studies on the synthesis of ultrafine copper powders are described in the article. The mechanisms of formation of ultrafine powders, using water-soluble polyacrylamide and polyvinyl-pyrrolidone polymers, as particle growth inhibitors, are presented. The processes occurring in the presence of water-soluble polymers and their influence on the structure of the obtained ultrafine copper powders are described. The interaction of the matrix of polymer composite materials with filler particles is analyzed. The kinetics of crystallization and transformation of crystalline phases of the powder, due to the process in the presence of water-soluble polymers, as stabilizers of particle growth, are investigated.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

1069-1074

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.S. Djokić, Electrochemical Production of Metal Powders, Springer Science+Business Media New York, (2012).

Google Scholar

[2] T.D. Golden, M.G. Shumsky, Ya. Zhou, R.A. Vander Werf, R. A. Van Leeuwen, J.A. Switzer, Electrochemical Deposition of Copper(I) Oxide Films, Chemistry of Materials 8 (1996) 2499-2504.

DOI: 10.1021/cm9602095

Google Scholar

[3] S.S. Djokic, Cavallotti Electroless deposition: theory and applications. Springer, New York, 2010, pp.251-289.

Google Scholar

[4] M.I. Alymov, V.S. SHustov, L.S. Ustyuhin, E.V. Evstratov, The ratio between the quality of nanopowders and the performance of their production methods. Kompozity i nanostruktury-Composites and Nanostructures, 3 (2012) 3-9.

Google Scholar

[5] Z.H. Zhang, F.C. Wang, L. Wang, S.K. Li, M.W. Shen, S. Osamu, Microstructural characteristics of large-scale ultrafine-grained copper. Materials Characterization, 59(3) 2008, 329-333.

DOI: 10.1016/j.matchar.2007.06.014

Google Scholar

[6] M. Uda, Production of ultrafine metal and alloy powders by hydrogen thermal plasma. Nanostructured Materials, 1(1) (1992) 101–106.

DOI: 10.1016/0965-9773(92)90060-b

Google Scholar

[7] Y.A. Kotov, Electric Explosion of Wires as a Method for Preparation of Nanopowders. Journal of Nanoparticle Research, 5(5/6) (2003) 539-550.

DOI: 10.1023/b:nano.0000006069.45073.0b

Google Scholar

[8] Z.-H. Zhang, F.-C. Wang, L. Wang, S.-K. Li, Ultrafine-grained copper prepared by spark plasma sintering process. Materials Science and Engineering: A, 476(1-2) (2008) 201-205.

DOI: 10.1016/j.msea.2007.04.107

Google Scholar

[9] B. Faure, G. Salazar-Alvarez, A. Ahniyaz, I. Villaluenga, G. Berriozabal, Yo.R.De Miguel, L. Bergstrom, Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. Science and technology of advanced materials, 14 (2013).

DOI: 10.1088/1468-6996/14/2/023001

Google Scholar

[10] J. Virkutyte, R.S. Varma Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chemical Science, 2 (2011) 837-846.

DOI: 10.1039/c0sc00338g

Google Scholar

[11] C. Lourenco, M. Teixeira, S. Simoes, R. Gaspar, Steric stabilization of nanoparticles: size and surface properties. International Journal of Pharmaceutics. 138 (1996) 1-12.

DOI: 10.1016/0378-5173(96)04486-9

Google Scholar

[12] N. Sharma, P. Madan, S. Lin, Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian Journal of Pharmaceutical Sciences. 2015, pp.1-13.

DOI: 10.1016/j.ajps.2015.09.004

Google Scholar

[13] A.M. Timonov, S.V. Vasil'eva, Electronic conductivity of polymer compounds, Sorosovskij obrazovatel'nyj zhurnal - Soros educational journal, T. 6, V.3 (2000) 33-39.

Google Scholar

[14] S.M. Aldoshin, G.I. Dzhardimalieva, A.D. Pomogailo, Yu.A. Abuzin, Reactivity of metal-containing monomers 71. Synthesis of nanosized quasicrystals and related metallopolymer composites Russian Chemical Bulletin. Т. 60. V. 9. (2011) 1871-1879.

DOI: 10.1007/s11172-011-0282-9

Google Scholar

[15] S.V. Panin, L.A. Kornienko, L.R. Ivanova, S. Vannasri, S. Piriyaon, T. Puvadin, S.V. Shil'ko Comparison of the efficiency of modification of SHMPE by nanofibers (C, Al2O3) and nanoparticles (Cu, SiO2) when obtaining antifriction composites. Journal of Friction and Wear. Т. 31. V. 6. (2010) 460-468.

DOI: 10.3103/s1068366610060097

Google Scholar

[16] G.A. Danyushina, Yu.M. Berezhnoj, V.M. Lipkin, P.D. Derlugyan, V.G. SHishka, O.N. Goncharova, N.V. SHishka, Properties of copper nanosized powders stabilized by water-soluble polymers in the production process. Inzhenernyj vestnik Dona - Engineering Journal of Don., V. 3 (2016). Available at: http://www.ivdon.ru/ru/magazine/archive/n3y2016/3723). (accessed 20.07.2018).

Google Scholar

[17] M.Yu. Berezhnaya, Obtaining of ultradispersed powders of copper, stable water-soluble polymers, antifriction metal-polymer materials. The dissertation on competition of a scientific degree of candidate of technical Sciences, South-Russian state Polytechnic University (NPI). M. I. Platov. Novocherkassk, (2015).

DOI: 10.17580/or.2019.05.07

Google Scholar

[18] A.V. Goryainova, G.K. Bozhkov, M.S. Tihonova, The fluoroplastics in machine building. Moscow, mechanical engineering (1971).

Google Scholar

[19] A.A. Ohlopkova, P.N. Petrova, S.N. Popov, S.A. Slepcova, Polymer composite materials of tribotechnical purpose based on polytetrafluoroethylene. Rossijskij himicheskij zhurnal ZHurnal Rossijskogo himicheskogo obshchestva im. D. I. Mendeleeva, Russian journal of organic chemistry journal of the Russian chemical society. D. I. Mendeleev., T. LII, V 3 (2008) 147-152.

Google Scholar