[1]
J. Thornton, Pandora's Poison: Chlorine, Health, and a New Environmental Strategy, MIT Press, Cambridge, (2001).
Google Scholar
[2]
K.H. Kim, Z.H. Shon, H.T. Nguyen, E.C. Jeon, A review of major chlorofluorocarbons and their halocarbon alternatives in the air. Atmos, Environ. 45 (2011) 1369–1382.
DOI: 10.1016/j.atmosenv.2010.12.029
Google Scholar
[3]
R. Hossaini, M.P. Chipperfield, A. Saiz-Lopez, J.J. Harrison, R. von Glasow, R. Sommariva, E. Atlas, M. Navarro, S.A. Montzka, W. Feng, Growth in stratospheric chlorine from short-lived chemicals not controlled by the Montreal Protocol. Geophy. Res. Lett. 42 (2015) 4573–4580.
DOI: 10.1002/2015gl063783
Google Scholar
[4]
M.H. Cho, S.H. Jung, J.S. Kim, Pyrolysis of mixed plastic wastes for the recovery of benzene, toluene, and xylene (BTX) aromatics in a fluidized bed and chlorine removal by applying various additives, Energy Fuels. 24 (2010) 1389–1395.
DOI: 10.1021/ef901127v
Google Scholar
[5]
W.T. Tsai, Fate of chloromethanes in the atmospheric environment: implications for human health, ozone formation and depletion, and global warming impacts, Toxics. 5 (2017) 1-13.
DOI: 10.3390/toxics5040023
Google Scholar
[6]
A. Shutov, P. V. Bogdanov, P. L. Pleskunov, Destruction of organic dyes in aqueous solution by low-temperature plasma jet treatment, High Energy Chem. 50 (2016) 77-81.
DOI: 10.1134/s0018143915050124
Google Scholar
[7]
J. Yongjun, L. Crittenden, W.L. Panliang, Dechlorination and decomposition of chloroform induced by glow discharge plasma in an aqueous solution, Journal of Hazardous Materials. 308 (2016) 84-90.
DOI: 10.1016/j.jhazmat.2016.01.013
Google Scholar
[8]
D. J. Economou, Hybrid Simulation of Low Temperature Plasmas: A Brief Tutorial, Plasma Process. Polym. 14 (2017) 1-16.
DOI: 10.1002/ppap.201600152
Google Scholar
[9]
M. Sahni, W. C. Finney, B. R. Locke, Degradation of Aqueous Phase Polychlorinated Biphenyls (PCB) Using Pulsed Corona Discharges, J. Adv. Oxid Technol. 8 (2005) 105-111.
DOI: 10.1515/jaots-2005-0117
Google Scholar
[10]
A.V. Dunaev, D.V. Sitanov, D.B. Murin, General Features of Interaction between Copper and Chlorine Containing Gases, High Energy Chemistry. 51 (2017) 224–228.
DOI: 10.1134/s0018143917030031
Google Scholar
[11]
N. Peng, Z. Liu, T Liu, C. Gai, Emissions of polycyclic aromatic hydrocarbons (PAHs) during hydrothermally treated municipal solid waste combustion for energy generation, Appl Energy. 184 (2016) 396–403.
DOI: 10.1016/j.apenergy.2016.10.028
Google Scholar
[12]
G.Y. Gerasimov, Gas-phase radiation-chemical formation of dioxins from chlorinated phenols, High Energy Chemistry. 41 (2007) 20–24.
DOI: 10.1134/s0018143907010043
Google Scholar
[13]
X. Liu, H. Fiedler, W. Gong, B. Wang, G. Yu, Potential sources of unintentionally produced PCB, HCB, and PeCBz in China: A preliminary overview, Front. Environ. Sci. Eng. 12 (2018) 1-14.
DOI: 10.1007/s11783-018-1036-9
Google Scholar
[14]
I.V. Bodrikov, A.M. Kut'in, E.Yu. Titov, D.Yu. Titov, R.R. Gazizullin, Low-Voltage Electron-Induced Reaction of Chlorobenzene in Liquid Phase, High Energy Chem. 51 (2017) 60-64.
DOI: 10.1134/s0018143916060023
Google Scholar
[15]
E.Yu. Titov, D.Yu. Titov, I.V. Bodrikov, A.M. Kut'in, Yu.A. Kurskii, R.R. Gazizzulin, A Device for Generation of Low-Voltage Discharges in Liquid Dielectric Media, High Energy Chemistry. 52 (2018) 512–513.
DOI: 10.1134/s0018143918060152
Google Scholar
[16]
I.V. Bodrikov, A.M. Kut'in, E.Yu. Titov, D.Yu. Titov, Y.A. Kurskii, R.R. Gazizullin, Fragmentation of thiophene and 3-methyl-2-thiophenecarboxaldehyde by direct liquid phase lowvoltage discharges. Plasma Process Polym. 15 (2018) e1800094.
DOI: 10.1002/ppap.201800094
Google Scholar
[17]
H.V. Boenig, Fundamentals of plasma chemistry and technology, Technomic publ. co. Cop., Lancaster, (1988).
Google Scholar
[18]
Yu.P. Raiser, Gas discharge physics, House Intellect,, Dolgoprudny, (2009).
Google Scholar
[19]
G.F. Voronin, Fundamentals of Thermodynamics, Moscow State University Publishing House, Moscow, (1987).
Google Scholar
[20]
P.Kourkkari, R.Pajarre, A Gibbs energy minimization method for constrained and partial equilibria, Pure Appl. Chem. 83 (2011) 1243–1254.
DOI: 10.1351/pac-con-10-09-36
Google Scholar
[21]
Yu. N. Tumanov, A.V. Nosikov, A.M. Kruchinin, A.F. Galkin, B.V. Potapkin, M.A. Deminskij, G. V. Belov, and V. D. Rusanov, Slag-free process for plasma reduction of uranium from oxide raw material, Fizika i himiya obrabotki materialov. 4 (2000) 46–54.
Google Scholar
[22]
S.A. Davidson, K.M. Evenson, J.M. Brown, A Measurement of the Rotational Spectrum of the CH Radical in the Far-Infrared, Astrophys. J. 546 (2001) 330–337.
DOI: 10.1086/318255
Google Scholar
[23]
Q. An, M. J. Cheng, W. A. Goddard, A. Jaramillo-Botero, CCl Radicals As a Carbon Source for Diamond Thin Film Deposition, The Journal of Physical Chemistry Letters. 5 (2014) 481-484.
DOI: 10.1021/jz402527y
Google Scholar