Plasma-Chemical Simulation Fragmentation of Chloroform in the Liquid Phase by Direct Electrical Discharges

Article Preview

Abstract:

The process of chloroform fragmentation under the influence of low-voltage electrical discharges in the liquid phase is modeled. The composition of the low-temperature plasma of chloroform activation products is determined, using a chemical plasma model (CPM). The CPM is based on the principle of minimizing the Gibbs energy, which is supplemented by the concept of conditionally-equilibrium states for describing the non-equilibrium of an electro-contact plasma. The developed model provided an opportunity to characterize the energy-saturated electronic subsystem with a temperature of ≈ 11600 K and its “cold” part (ions, intermediates, synthons, molecules, etc.), with a temperature of about 1000 K. According to the calculation results, the participation of valence unsaturated fragments CCl2, CH, Cl· and molecules HCl, Cl2, C2Cl4, C2Cl2 in the transformation of chloroform.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

1080-1085

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Thornton, Pandora's Poison: Chlorine, Health, and a New Environmental Strategy, MIT Press, Cambridge, (2001).

Google Scholar

[2] K.H. Kim, Z.H. Shon, H.T. Nguyen, E.C. Jeon, A review of major chlorofluorocarbons and their halocarbon alternatives in the air. Atmos, Environ. 45 (2011) 1369–1382.

DOI: 10.1016/j.atmosenv.2010.12.029

Google Scholar

[3] R. Hossaini, M.P. Chipperfield, A. Saiz-Lopez, J.J. Harrison, R. von Glasow, R. Sommariva, E. Atlas, M. Navarro, S.A. Montzka, W. Feng, Growth in stratospheric chlorine from short-lived chemicals not controlled by the Montreal Protocol. Geophy. Res. Lett. 42 (2015) 4573–4580.

DOI: 10.1002/2015gl063783

Google Scholar

[4] M.H. Cho, S.H. Jung, J.S. Kim, Pyrolysis of mixed plastic wastes for the recovery of benzene, toluene, and xylene (BTX) aromatics in a fluidized bed and chlorine removal by applying various additives, Energy Fuels. 24 (2010) 1389–1395.

DOI: 10.1021/ef901127v

Google Scholar

[5] W.T. Tsai, Fate of chloromethanes in the atmospheric environment: implications for human health, ozone formation and depletion, and global warming impacts, Toxics. 5 (2017) 1-13.

DOI: 10.3390/toxics5040023

Google Scholar

[6] A. Shutov, P. V. Bogdanov, P. L. Pleskunov, Destruction of organic dyes in aqueous solution by low-temperature plasma jet treatment, High Energy Chem. 50 (2016) 77-81.

DOI: 10.1134/s0018143915050124

Google Scholar

[7] J. Yongjun, L. Crittenden, W.L. Panliang, Dechlorination and decomposition of chloroform induced by glow discharge plasma in an aqueous solution, Journal of Hazardous Materials. 308 (2016) 84-90.

DOI: 10.1016/j.jhazmat.2016.01.013

Google Scholar

[8] D. J. Economou, Hybrid Simulation of Low Temperature Plasmas: A Brief Tutorial, Plasma Process. Polym. 14 (2017) 1-16.

DOI: 10.1002/ppap.201600152

Google Scholar

[9] M. Sahni, W. C. Finney, B. R. Locke, Degradation of Aqueous Phase Polychlorinated Biphenyls (PCB) Using Pulsed Corona Discharges, J. Adv. Oxid Technol. 8 (2005) 105-111.

DOI: 10.1515/jaots-2005-0117

Google Scholar

[10] A.V. Dunaev, D.V. Sitanov, D.B. Murin, General Features of Interaction between Copper and Chlorine Containing Gases, High Energy Chemistry. 51 (2017) 224–228.

DOI: 10.1134/s0018143917030031

Google Scholar

[11] N. Peng, Z. Liu, T Liu, C. Gai, Emissions of polycyclic aromatic hydrocarbons (PAHs) during hydrothermally treated municipal solid waste combustion for energy generation, Appl Energy. 184 (2016) 396–403.

DOI: 10.1016/j.apenergy.2016.10.028

Google Scholar

[12] G.Y. Gerasimov, Gas-phase radiation-chemical formation of dioxins from chlorinated phenols, High Energy Chemistry. 41 (2007) 20–24.

DOI: 10.1134/s0018143907010043

Google Scholar

[13] X. Liu, H. Fiedler, W. Gong, B. Wang, G. Yu, Potential sources of unintentionally produced PCB, HCB, and PeCBz in China: A preliminary overview, Front. Environ. Sci. Eng. 12 (2018) 1-14.

DOI: 10.1007/s11783-018-1036-9

Google Scholar

[14] I.V. Bodrikov, A.M. Kut'in, E.Yu. Titov, D.Yu. Titov, R.R. Gazizullin, Low-Voltage Electron-Induced Reaction of Chlorobenzene in Liquid Phase, High Energy Chem. 51 (2017) 60-64.

DOI: 10.1134/s0018143916060023

Google Scholar

[15] E.Yu. Titov, D.Yu. Titov, I.V. Bodrikov, A.M. Kut'in, Yu.A. Kurskii, R.R. Gazizzulin, A Device for Generation of Low-Voltage Discharges in Liquid Dielectric Media, High Energy Chemistry. 52 (2018) 512–513.

DOI: 10.1134/s0018143918060152

Google Scholar

[16] I.V. Bodrikov, A.M. Kut'in, E.Yu. Titov, D.Yu. Titov, Y.A. Kurskii, R.R. Gazizullin, Fragmentation of thiophene and 3-methyl-2-thiophenecarboxaldehyde by direct liquid phase lowvoltage discharges. Plasma Process Polym. 15 (2018) e1800094.

DOI: 10.1002/ppap.201800094

Google Scholar

[17] H.V. Boenig, Fundamentals of plasma chemistry and technology, Technomic publ. co. Cop., Lancaster, (1988).

Google Scholar

[18] Yu.P. Raiser, Gas discharge physics, House Intellect,, Dolgoprudny, (2009).

Google Scholar

[19] G.F. Voronin, Fundamentals of Thermodynamics, Moscow State University Publishing House, Moscow, (1987).

Google Scholar

[20] P.Kourkkari, R.Pajarre, A Gibbs energy minimization method for constrained and partial equilibria, Pure Appl. Chem. 83 (2011) 1243–1254.

DOI: 10.1351/pac-con-10-09-36

Google Scholar

[21] Yu. N. Tumanov, A.V. Nosikov, A.M. Kruchinin, A.F. Galkin, B.V. Potapkin, M.A. Deminskij, G. V. Belov, and V. D. Rusanov, Slag-free process for plasma reduction of uranium from oxide raw material, Fizika i himiya obrabotki materialov. 4 (2000) 46–54.

Google Scholar

[22] S.A. Davidson, K.M. Evenson, J.M. Brown, A Measurement of the Rotational Spectrum of the CH Radical in the Far-Infrared, Astrophys. J. 546 (2001) 330–337.

DOI: 10.1086/318255

Google Scholar

[23] Q. An, M. J. Cheng, W. A. Goddard, A. Jaramillo-Botero, CCl Radicals As a Carbon Source for Diamond Thin Film Deposition, The Journal of Physical Chemistry Letters. 5 (2014) 481-484.

DOI: 10.1021/jz402527y

Google Scholar