[1]
Nail F. Timerbaev, et al., IOP Conf. Ser.: Mater. Sci. Eng., 142 (2016) 012096.
Google Scholar
[2]
D.V. Tuntsev, et al. Recycling of used wooden slippers, Forestry Bulletin, Moscow, 21(2) (2017) 70-75.
Google Scholar
[3]
T.N. Storodubtseva, A.A. Aksomitny, A.R. Sadrtdinov, Thermal Insulation Properties of Wood Polymeric Sand Composite, Solid State Phenomena, 284 (2018) 986-992.
DOI: 10.4028/www.scientific.net/ssp.284.986
Google Scholar
[4]
D.V. Tuntsev, et al., Utilisation of used wooden slippers by method of thermoconductive pyrolysis, Bulletin of Ugra state university, Ugra, S2(37) (2015) 139-140.
Google Scholar
[5]
L.B. Svatovskaya, T.S. Titova, E.V. Rusanova, New technologies of utilizing waste wooden ties, Science and Technology in Transport, Moscow, 3 (2005) 16-18.
Google Scholar
[6]
V.V. Stepanov, N.F. Timerbaev, Composite Railroad Ties Obtained by the Energy Efficient Recycle of Wooden Railroad Ties. Solid State Phenomena, 284 (2018) 981-985.
DOI: 10.4028/www.scientific.net/ssp.284.981
Google Scholar
[7]
D.B. Prosvirnikov, R.G. Safin, S.R. Zakirov, Microcrystalline Cellulose Based on Cellulose Containing Raw Material Modified by Steam Explosion Treatment. Solid State Phenomena, 284 (2018) 773-778.
DOI: 10.4028/www.scientific.net/ssp.284.773
Google Scholar
[8]
C. Di Blasi, Analysis of Convection and Secondary Reaction Effects Within Porous Solid Fuels Undergoing Pyrolysis, Combustion Science and Technology, 90:5-6 (1993) 315-340.
DOI: 10.1080/00102209308907620
Google Scholar
[9]
D.V. Tuntsev, et al. The mathematical model of fast pyrolysis of wood waste. Paper presented at the International Conference on Mechanical Engineering, Automation and Control Systems, MEACS, Tomsk Polytechnic, (2015).
DOI: 10.1109/meacs.2015.7414929
Google Scholar
[10]
R.G. Safin, et al., A mathematical model of thermal decomposition of wood in conditions of fluidized bed, Acta Facultatis Xylologiae, 58 (2) (2016) 141-148.
Google Scholar
[11]
T.N. Storodubtseva et al., The Study of Soundproofing Properties of Wood Polymer-Sand Composite, Solid State Phenomena, 284 (2018) 993-998.
DOI: 10.4028/www.scientific.net/ssp.284.993
Google Scholar
[12]
D.V. Tuntsev, Improvement of technology and equipment of the process of thermal decomposition of wood in a boiling layer. PhD diss., Kazan national research technological university, (2011).
Google Scholar
[13]
N.F. Timerbaev, et al., IOP Conf. Ser.: Earth Environ., Sci. 87 (2017) 082047.
Google Scholar
[14]
D.V. Tuntsev, D.B. Prosvirnikov, R.R. Kozlov, Physical and chemical properties of activated lignocellulose and its areas of application, Solid State Phenomena, 284 (2018) 779-784.
DOI: 10.4028/www.scientific.net/ssp.284.779
Google Scholar
[15]
M.S. Mettler, D.G. Vlachos, P.J. Dauenhauer, Top ten fundamental challenges of biomass pyrolysis for biofuels, Energy Environ Sci 2012, (5) (2012) 797-809.
DOI: 10.1039/c2ee21679e
Google Scholar
[16]
A.A. Fomin, et al., Geometrical Errors of Surfaces Milled with Convex and Concave Profile Tools", Solid State Phenomena, 284 (2018) 281-288.
DOI: 10.4028/www.scientific.net/ssp.284.281
Google Scholar
[17]
D.V. Tuncev, Z.G. Sattarova, I.M. Galiev, Multi-layer wood-polymer composite. Solid State Phenomena, 265 (2017) 47-52.
DOI: 10.4028/www.scientific.net/ssp.265.47
Google Scholar
[18]
D.B. Prosvirnikov, et al., IOP Conf. Ser.: Mater. Sci. Eng., 221 (2017) 012009.
Google Scholar
[19]
N.F. Timerbaev, A.R. Sadrtdinov and R.G. Safin, Software systems application for shafts strength analysis in mechanical engineering. Procedia Engineering, 206 (2017) 1376–1381.
DOI: 10.1016/j.proeng.2017.10.648
Google Scholar
[20]
Almaz R. Sadrtdinov, et al., IOP Conf. Ser.: Mater. Sci. Eng. 142 (2016) 012094.
Google Scholar