Processing of Used Wooden Slippers by Thermal Method

Article Preview

Abstract:

The paper provides an overview of the methods of utilization and processing of used wooden sleepers. The advantages and disadvantages of these methods are revealed. A mathematical description of the process of processing used sleepers by the method of fast pyrolysis is presented. We presented the results of theoretical and experimental studies of the volume of yield of thermal decomposition products in dependence on the process temperature, the hold-up time of the steam-gas mixture in the reaction zone, and the used wooden sleepers’ particle size.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

1091-1098

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Nail F. Timerbaev, et al., IOP Conf. Ser.: Mater. Sci. Eng., 142 (2016) 012096.

Google Scholar

[2] D.V. Tuntsev, et al. Recycling of used wooden slippers, Forestry Bulletin, Moscow, 21(2) (2017) 70-75.

Google Scholar

[3] T.N. Storodubtseva, A.A. Aksomitny, A.R. Sadrtdinov, Thermal Insulation Properties of Wood Polymeric Sand Composite, Solid State Phenomena, 284 (2018) 986-992.

DOI: 10.4028/www.scientific.net/ssp.284.986

Google Scholar

[4] D.V. Tuntsev, et al., Utilisation of used wooden slippers by method of thermoconductive pyrolysis, Bulletin of Ugra state university, Ugra, S2(37) (2015) 139-140.

Google Scholar

[5] L.B. Svatovskaya, T.S. Titova, E.V. Rusanova, New technologies of utilizing waste wooden ties, Science and Technology in Transport, Moscow, 3 (2005) 16-18.

Google Scholar

[6] V.V. Stepanov, N.F. Timerbaev, Composite Railroad Ties Obtained by the Energy Efficient Recycle of Wooden Railroad Ties. Solid State Phenomena, 284 (2018) 981-985.

DOI: 10.4028/www.scientific.net/ssp.284.981

Google Scholar

[7] D.B. Prosvirnikov, R.G. Safin, S.R. Zakirov, Microcrystalline Cellulose Based on Cellulose Containing Raw Material Modified by Steam Explosion Treatment. Solid State Phenomena, 284 (2018) 773-778.

DOI: 10.4028/www.scientific.net/ssp.284.773

Google Scholar

[8] C. Di Blasi, Analysis of Convection and Secondary Reaction Effects Within Porous Solid Fuels Undergoing Pyrolysis, Combustion Science and Technology, 90:5-6 (1993) 315-340.

DOI: 10.1080/00102209308907620

Google Scholar

[9] D.V. Tuntsev, et al. The mathematical model of fast pyrolysis of wood waste. Paper presented at the International Conference on Mechanical Engineering, Automation and Control Systems, MEACS, Tomsk Polytechnic, (2015).

DOI: 10.1109/meacs.2015.7414929

Google Scholar

[10] R.G. Safin, et al., A mathematical model of thermal decomposition of wood in conditions of fluidized bed, Acta Facultatis Xylologiae, 58 (2) (2016) 141-148.

Google Scholar

[11] T.N. Storodubtseva et al., The Study of Soundproofing Properties of Wood Polymer-Sand Composite, Solid State Phenomena, 284 (2018) 993-998.

DOI: 10.4028/www.scientific.net/ssp.284.993

Google Scholar

[12] D.V. Tuntsev, Improvement of technology and equipment of the process of thermal decomposition of wood in a boiling layer. PhD diss., Kazan national research technological university, (2011).

Google Scholar

[13] N.F. Timerbaev, et al., IOP Conf. Ser.: Earth Environ., Sci. 87 (2017) 082047.

Google Scholar

[14] D.V. Tuntsev, D.B. Prosvirnikov, R.R. Kozlov, Physical and chemical properties of activated lignocellulose and its areas of application, Solid State Phenomena, 284 (2018) 779-784.

DOI: 10.4028/www.scientific.net/ssp.284.779

Google Scholar

[15] M.S. Mettler, D.G. Vlachos, P.J. Dauenhauer, Top ten fundamental challenges of biomass pyrolysis for biofuels, Energy Environ Sci 2012, (5) (2012) 797-809.

DOI: 10.1039/c2ee21679e

Google Scholar

[16] A.A. Fomin, et al., Geometrical Errors of Surfaces Milled with Convex and Concave Profile Tools", Solid State Phenomena, 284 (2018) 281-288.

DOI: 10.4028/www.scientific.net/ssp.284.281

Google Scholar

[17] D.V. Tuncev, Z.G. Sattarova, I.M. Galiev, Multi-layer wood-polymer composite. Solid State Phenomena, 265 (2017) 47-52.

DOI: 10.4028/www.scientific.net/ssp.265.47

Google Scholar

[18] D.B. Prosvirnikov, et al.,  IOP Conf. Ser.: Mater. Sci. Eng., 221 (2017) 012009.

Google Scholar

[19] N.F. Timerbaev, A.R. Sadrtdinov and R.G. Safin, Software systems application for shafts strength analysis in mechanical engineering. Procedia Engineering, 206 (2017) 1376–1381.

DOI: 10.1016/j.proeng.2017.10.648

Google Scholar

[20] Almaz R. Sadrtdinov, et al., IOP Conf. Ser.: Mater. Sci. Eng. 142 (2016) 012094.

Google Scholar