[1]
M.A. Okatov, ed., Optical Technician's Handbook (Politekhnika, St. Petersburg, 2004).
Google Scholar
[2]
W. Moreau, Semiconductor Lithography: Principles, Practices, and Materials (Springer, 1988).
Google Scholar
[3]
V.E. Levinok and V.B. Martynova, Strain-free cementing of quartz to Invar, J. Opt. Technol. 62 (1995) 724-727.
Google Scholar
[4]
V.V. Potelov, The possibility of increasing the strength of cemented optical assemblies when there is a large difference of the linear thermal-expansion coefficients, J. Opt. Technol. 76 (2009) 371-372.
DOI: 10.1364/jot.76.000371
Google Scholar
[5]
D.Y. Kruchinin, O.B. Yakovlev and M.P. Andronov, Cementing optical items that have zero cleanliness classes of polished surfaces, J. Opt. Technol. 78 (2011) 279-280.
DOI: 10.1364/jot.78.000279
Google Scholar
[6]
D.Yu. Kruchinin and O.B. Yakovlev, Russian Patent 2,454,379 (2012).
Google Scholar
[7]
D.Yu. Kruchinin, L.T. Garayshina, D.N. Babushkina and D.E. Gaft, The influence of polymerization temperature of OK72FT15 cement brand on deformation of external surfaces of optical cemented assemblies, in: Innovation Advances in Technical Sciences, Moscow, Evansys, 2017, p.43–45.
Google Scholar
[8]
D.Yu. Kruchinin and E.P. Farafontova, How the state of optical surfaces before cementing affects the strength of optical assemblies, J. Opt. Technol. 85 (2018) 648-650.
DOI: 10.1364/jot.85.000648
Google Scholar
[9]
Optical cements. Brands, Organization standard STO-33122646-1.1-2014 (S. I. Vavilov GOI, St. Petersburg, 2014).
Google Scholar
[10]
Optical cements. Brands, OST 3-6894-97.
Google Scholar
[11]
Optical epoxy cement OK-72FT technical specification, TU 2252-005-33122646-14.
Google Scholar
[12]
Optical components. Typical technological rinsing processes, OST 3-6419-88.
Google Scholar
[13]
Optical cements. Control and measurement methods, Organization standard STO-33122646-1.2-2014 (S. I. Vavilov GOI, St. Petersburg, 2014).
Google Scholar
[14]
Optical cements. Control and testing methods, OST 3-6187-95.
Google Scholar
[15]
Cements for optical components. Typical technological cementing processes, OST 3-5555-84.
Google Scholar
[16]
Optical cements. Technological process requirements for making cements and cementing optical components, OST 3-2989-93.
Google Scholar
[17]
A. Moroño, R. Vila and E.R. Hodgson, KU1 and KS-4V quartz glass lenses for remote handling and diagnostic optical transmission systems, J. Nucl. Mat. 329-333 (2004) 1438-1441.
DOI: 10.1016/j.jnucmat.2004.04.163
Google Scholar
[18]
V.K. Bityukov and V.A. Petrov, Optical Quartz Glass as a Reference Substance for the Thermal Conductivity Coefficient of Partially Transparent Materials, High Temperature. 38 (2000) 293-299.
DOI: 10.1007/bf02755959
Google Scholar
[19]
Y.H. Li, F.S. Liu, H.Y. Ma, X.L. Cheng, X.J. Ma, Y.Y. Sun, M.J. Zhang and X.D. Xue, Optical Transparency and Development of Failure in Quartz Glass Under Dynamic Load, Wuli Xuebao. 59 (2010) 2104-2108.
DOI: 10.7498/aps.59.2104
Google Scholar
[20]
D.E. Zhivulin, M.S. Zubov and A.N. Bryzgalov, Effect of heat treatment on the microhardness of quartz glass of the KU-1 brand, Glass Phys. Chem. 41 (2015) 385-388.
DOI: 10.1134/s1087659615040185
Google Scholar
[21]
Y.I. Kolesov, M.Y. Kudryavtsev and N.Y. Mikhailenko, Types and Compositions of Glass for Production of Continuous Glass Fiber (Review), Glass and Ceramics. 58 (2001) 197-202.
DOI: 10.1023/a:1012386814248
Google Scholar
[22]
D.E. Zhivulin, M.S. Zubov and A. N. Bryzgalov, Influence of the Temperature of Treatment of KU-1 Quartz Glass on the Value of the Elastic Recovery of a Microindentation Imprint, Glass Phys. Chem. 42 (2016) 154-157.
DOI: 10.1134/s1087659616020176
Google Scholar
[23]
Silica optical glass. General specifications, GOST 15130-86.
Google Scholar