[1]
Y. Liu, Yang-yang Fan, Jun-fu Qi, Ting-an Zhang, Research on sulfur conversion behavior in oxygen pressure acid leaching process of high indium sphalerite, Materials Processing Fundamentals. 1 (2018) 199-208.
DOI: 10.1007/978-3-319-72131-6_18
Google Scholar
[2]
W. Luo, J. Wang, Y. Gan, The iron removal in marmatite concentrate pressure leaching process, Materials Science and Engineering. 303 (2018) 1-6.
Google Scholar
[3]
L. Tian, Y. Liu, G.Z. Lv, X. Yu, Z. Zhou, T.A. Zhang, Research on Sulphur conversion and acid balance from marmatite in pressure acid leaching, Canadian Metallurgical Quarterly. 55 (2016) 438-447.
DOI: 10.1080/00084433.2016.1210274
Google Scholar
[4]
Y. Gu, T.-A. Zhang, Y. Liu, W.-Z. Mu, W.-G. Zhang, Z.-H. Dou, X.-L. Jiang, Pressure acid leaching of zinc sulfide concentrate, Transactions of Nonferrous Metal Society of China. 20 (2010) 136-140.
DOI: 10.1016/s1003-6326(10)60028-3
Google Scholar
[5]
E.B. Khazieva, V.V. Sviridov, V.A. Menshchikov, S.S. Naboychenko, Influence of surface-active substances on sulfur state during the autoclave leaching of zinc concentrates, Non–ferrous metals. 2 (2017) 46-50.
DOI: 10.4028/www.scientific.net/ssp.265.1104
Google Scholar
[6]
E.B. Khazieva, V.V. Sviridov, V.A. Menshchikov, S.S. Naboychenko, Surfactants influence on sphalerite wetting during zinc concentrate pressure leaching, Solid State Phenomena. 265 (2017) 1104-1109.
DOI: 10.4028/www.scientific.net/ssp.265.1104
Google Scholar
[7]
L. Tong, D. Dreisinger, The adsorption of sulfur dispersing agents on sulfur and nickel sulfide concentrate surfaces, Minerals Engineering. 22 (2009) 445-450.
DOI: 10.1016/j.mineng.2008.12.006
Google Scholar
[8]
G. Owusu, D. B. Dreisinger, Interfacial properties determinations in liquid sulfur, aqueous zinc sulfate and zinc sulfide systems, Hydrometallurgy. 4 (1996) 207-218.
DOI: 10.1016/s0304-386x(96)90002-x
Google Scholar
[9]
G. Owusu, D. B. Dreisinger, Interfacial effects of surface-active agents under zinc pressure leach conditions, Hydrometallurgy. 1 (1995) 5-12.
DOI: 10.1007/bf02648972
Google Scholar
[10]
L. Tong, D. Dreisinger, Interfacial properties of liquid sulfur in the pressure leaching of nickel concentrate, Minerals Engineering. 22 (2009) 456-461.
DOI: 10.1016/j.mineng.2008.12.003
Google Scholar
[11]
J.A. Brown, V.G. Papangelakis, Interfacial studies of liquid Sulphur during aqueous pressure oxidation of nickel sulphide, Minerals Engineering. 15 (2005) 1378-1385.
DOI: 10.1016/j.mineng.2005.02.008
Google Scholar
[12]
M. V. Trufanova, L. N. Parfenova, O. N. Yarygina, Surface-active properties of lignosulfonates, Zhurnal prikladnoj himii. 6 (2010) 1041-1043.
Google Scholar
[13]
G. Owusu, The role of surfactants in the leaching of zinc sulphide minerals at temperatures above the melting point of Sulphur: Ph.D. Thesis , Vancouver (1993) 229.
Google Scholar
[14]
Sylvie C. Bouffard, Alain Tshilombo, Paul G.West–Sells, Use of lignosulfonate for elemental sulfur biooxidation and copper leaching, Minerals Engineering. 1 (2009) 100-103.
DOI: 10.1016/j.mineng.2008.03.005
Google Scholar
[15]
E. Jorjani, A. Ghahreman, Challenges with elemental sulfur removal during the leaching of copper and zinc sulfides, and from the residues; a review, Hydrometallurgy. 8 (2017) 333-343.
DOI: 10.1016/j.hydromet.2017.06.011
Google Scholar
[16]
M.N. Naftal, A.F. Petrov, Т.P. Saverskaya, S.M. Gorbunov, Refinement of the mechanism of the influence of lignosulfonates on the formation of sulfur sulfide and sulfur phases in the autoclave oxidative leaching of nickel pyrrhotite concentrates, Non–ferrous metals. 8 (2009) 53-62.
Google Scholar
[17]
. Rana, G.N. Neale, V. Hornof, Surface tension of mixed surfactant systems: lignosulfonate and sodium dodecyl sulfate, Colloid and Polymer Science. 8 (2002) 775-778.
DOI: 10.1007/s00396-002-0687-y
Google Scholar
[18]
M.N. Naftal, The use of a combined surfactant is a promising direction for the improvement of the technology of autoclave–oxidation leaching of nickel–pyrrhotite concentrates, Non–ferrous metals. 10 (2011) 47-53.
Google Scholar
[19]
M.N. Naftal, S.S. Nabojchenko, Selection of an effective surfactant for autoclave–oxidizing leaching of nickel–pyrrhotite concentrates, Non–Ferrous Metals. 6 (2010) 56-62.
Google Scholar
[20]
T.N. Lugovitskaya, S.S. Nabojchenko, Physical and chemical properties of aqueous solutions of binary mixtures of lignin derivatives and sodium dodecylsulfate, Journal of Applied Chemistry. 1 (2018) 90-97.
Google Scholar
[21]
V.D. Grigor'ev, V.M. Piskunov, Electrochemical behavior of calcium lignosulfonate during zinc electrolysis, Sb/ Nauch. Tr. VNIItsvetmet. 1 (2006) 58-59.
Google Scholar
[22]
S. C. Das, P. Singh, G. T. Hefter, The effects of 4–ethylpyridine and 2–cyanopyridine on zinc electrowinning from acidic sulfate solutions, Journal of applied electrochemistry. 27 (1997) 738-744.
Google Scholar
[23]
M. Karavasteva, St. Karaivanov, Electrowinning of zinc at high current density in the presence of some surfactants, Journal of applied electrochemistry. 23 (1993) 763-765.
DOI: 10.1007/bf00243348
Google Scholar
[24]
B. C. Tripathy, S. C. Das G. T. Hefter, P. Singh, Zinc electrowinning from acidic sulfate solutions. Part I: Effects of sodium lauryl sulfate, Journal of applied electrochemistry. 27 (1997) 673-678.
DOI: 10.1007/bf00249926
Google Scholar
[25]
A.M. Alfantazi, D.B. Dreisinger, An investigation on the effects of orthophenylene diamine and sodium lignin sulfonate on zinc electrowinning from industrial electrolyte, Hydrometallurgy. 1-3 (2003) 99-107.
DOI: 10.1016/s0304-386x(03)00030-6
Google Scholar