Obtaining of High Quality Iron Oxide from Nitric Acid Leaching Solution

Article Preview

Abstract:

Low grade copper concentrate is a promising source for the future recovery of copper and other valuable components by nitric acid leaching, which leads to a formation of iron rich pregnant solution. In this study a method of producing of high-quality iron oxide from the pregnant solution by precipitation of jarosite with subsequent conversion of jarosite into magnetite under alkaline conditions in the presence of ferrous ions was explored. The degree of iron extraction was 87.4%, the copper content in the magnetite was 0.06% under the following optimal conditions of jarosite precipitation: precipitation time 6 h, initial pH 1.5, seed amount 60 g/L. However, to obtain this purity, the copper content in the pregnant solution should be less than 0.5 g/L, and as a seed, it is necessary to use a well-crystallized jarosite with a low content of impurities.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

1128-1133

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Sinclair, J. Thompson, In situ leaching of copper: challenges and future prospects, Hydrometallurgy. 157 (2015) 306–324.

DOI: 10.1016/j.hydromet.2015.08.022

Google Scholar

[2] D.A. Singer, Future copper resources, Ore Geol. Rev. 86 (2017) 271–279.

Google Scholar

[3] D.A. Rogozhnikov, B.V. Kolmachikhin, Polymetallic ore concentration middlings Nitric Acid leaching kinetics, Solid State Phenomena. 265 (2017) 1065-1070.

DOI: 10.4028/www.scientific.net/ssp.265.1065

Google Scholar

[4] D.A. Rogozhnikov, S.V. Mamyachenkov, O.S. Anisimova, Nitric Acid Leaching of Copper-Zinc Sulfide Middlings, Metallurgist. 60 (2016) 229-233.

DOI: 10.1007/s11015-016-0278-7

Google Scholar

[5] C.G. Anderson, The Optimization, Design and Economics of Industrial NSC Oxidative Pressure Leaching Of Complex Sulfide Concentrates, Int. J. Eng. Sci. 2 (2013) 01-16.

Google Scholar

[6] J.E. Dutrizac, Factors affecting alkali jarosite precipitation, Metall. Trans. B. 14 (1983) 531-539.

DOI: 10.1007/bf02653939

Google Scholar

[7] J.E. Dutrizac, The effect of seeding on the rate of precipitation of ammonium jarosite and sodium jarosite, Hydrometallurgy. 42 (1996) 293-312.

DOI: 10.1016/0304-386x(95)00111-s

Google Scholar

[8] A.H. Kaksonen, C. Morris, F. Hilario, S.M. Rea, J. Li, K.M. Usher, J. Wylie, M.P. Ginige, K.Y. Cheng, C. Du, Plessis, Iron oxidation and jarosite precipitation in a two-stage airlift bioreactor, Hydrometallurgy. 150 (2014) 227-235.

DOI: 10.1016/j.hydromet.2014.05.020

Google Scholar

[9] Y. Song, M. Wang, J. Liang, L. Zhou, High-rate precipitation of iron as jarosite by using a combination process of electrolytic reduction and biological oxidation, Hydrometallurgy. 143 (2014) 23-27.

DOI: 10.1016/j.hydromet.2014.01.003

Google Scholar

[10] J.E. Dutrizac, Comparative rates of precipitation of ammonium jarosite and sodium jarosite in ferric sulphate – sulphuric acid media, Can. Metall. Quart. 49 (2010) 121-130.

DOI: 10.1179/cmq.2010.49.2.121

Google Scholar

[11] J.E. Dutrizac, J.L. Jambor, Jarosites and their application in hydrometallurgy, Rev. Mineral. Geochem. 40 (2000) 404-452.

Google Scholar

[12] J.E. Dutrizac, Effectiveness of jarosite species for precipitating sodium jarosite, JOM. 51 (1999) 30-32.

DOI: 10.1007/s11837-999-0168-6

Google Scholar

[13] F. Elgersma, G.J. Witkamp, G.M. van Rosmalen, Incorporation of zinc in continuous jarosite precipitation, Hydrometallurgy. 33 (1993) 313-339.

DOI: 10.1016/0304-386x(93)90070-t

Google Scholar

[14] K.A. Hudson-Edwards, K. Wright, Computer simulations of the interactions of the (012) and (001) surfaces of jarosite with Al, Cd, Cu2+ and Zn, Geochim. Cosmochim. Acta. 75 (2011) 52-62.

DOI: 10.1016/j.gca.2010.10.004

Google Scholar

[15] W. W. Kunda, H. Veltman, Decomposition of Jarosite, Metall. Trans. B. 10 (1979) 439-446.

Google Scholar

[16] M. Kerolli-Mustafa, M. Vilco, L. Curkovic, J. Sipusic, Investigation of thermal decomposition of jarosite tailing waste, J Therm. Anal. Calorim. 123 (2016) 421–430.

DOI: 10.1007/s10973-015-4881-9

Google Scholar

[17] J.E. Dutrizac, Converting jarosite residues into compact hematite products, JOM. 42 (1990) 36-39.

DOI: 10.1007/bf03220521

Google Scholar

[18] J. Bohacek, Preparing particulate magnetites with pigment properties from suspicions of basic iron (III) sulfates with the structure of jarosite, J. Mater. Sci. 28 (1993) 2827-2832.

DOI: 10.1007/bf00356226

Google Scholar

[19] H. Vu, J. Jandova, T. Hron, Recovery of pigment-quality magnetite from jarosite precipitates, Hydrometallurgy, 10 (2010) 1-6.

DOI: 10.1016/j.hydromet.2009.10.007

Google Scholar

[20] J.L.T. Hage, R.D. Shuiling, S.P. Vriend, Production of magnetite from sodium jarosite under reducing hydrothermal conditions. The reduction of Fe(III) to Fe(II) with cellulose, Can. Metall. Quart. 38 (1999) 267-276.

DOI: 10.1179/cmq.1999.38.4.267

Google Scholar

[21] Y.M. Shneerson, V.F. Kozyrev, L.V. Chugaev, A.Y. Lapin, K.A. Plekhanov, G.V. Skopov, A.B. Lebed, G.P. Kharitidi, V.D. Shevelev, RU Patent 2365641. (2009).

Google Scholar