[1]
L. Sinclair, J. Thompson, In situ leaching of copper: challenges and future prospects, Hydrometallurgy. 157 (2015) 306–324.
DOI: 10.1016/j.hydromet.2015.08.022
Google Scholar
[2]
D.A. Singer, Future copper resources, Ore Geol. Rev. 86 (2017) 271–279.
Google Scholar
[3]
D.A. Rogozhnikov, B.V. Kolmachikhin, Polymetallic ore concentration middlings Nitric Acid leaching kinetics, Solid State Phenomena. 265 (2017) 1065-1070.
DOI: 10.4028/www.scientific.net/ssp.265.1065
Google Scholar
[4]
D.A. Rogozhnikov, S.V. Mamyachenkov, O.S. Anisimova, Nitric Acid Leaching of Copper-Zinc Sulfide Middlings, Metallurgist. 60 (2016) 229-233.
DOI: 10.1007/s11015-016-0278-7
Google Scholar
[5]
C.G. Anderson, The Optimization, Design and Economics of Industrial NSC Oxidative Pressure Leaching Of Complex Sulfide Concentrates, Int. J. Eng. Sci. 2 (2013) 01-16.
Google Scholar
[6]
J.E. Dutrizac, Factors affecting alkali jarosite precipitation, Metall. Trans. B. 14 (1983) 531-539.
DOI: 10.1007/bf02653939
Google Scholar
[7]
J.E. Dutrizac, The effect of seeding on the rate of precipitation of ammonium jarosite and sodium jarosite, Hydrometallurgy. 42 (1996) 293-312.
DOI: 10.1016/0304-386x(95)00111-s
Google Scholar
[8]
A.H. Kaksonen, C. Morris, F. Hilario, S.M. Rea, J. Li, K.M. Usher, J. Wylie, M.P. Ginige, K.Y. Cheng, C. Du, Plessis, Iron oxidation and jarosite precipitation in a two-stage airlift bioreactor, Hydrometallurgy. 150 (2014) 227-235.
DOI: 10.1016/j.hydromet.2014.05.020
Google Scholar
[9]
Y. Song, M. Wang, J. Liang, L. Zhou, High-rate precipitation of iron as jarosite by using a combination process of electrolytic reduction and biological oxidation, Hydrometallurgy. 143 (2014) 23-27.
DOI: 10.1016/j.hydromet.2014.01.003
Google Scholar
[10]
J.E. Dutrizac, Comparative rates of precipitation of ammonium jarosite and sodium jarosite in ferric sulphate – sulphuric acid media, Can. Metall. Quart. 49 (2010) 121-130.
DOI: 10.1179/cmq.2010.49.2.121
Google Scholar
[11]
J.E. Dutrizac, J.L. Jambor, Jarosites and their application in hydrometallurgy, Rev. Mineral. Geochem. 40 (2000) 404-452.
Google Scholar
[12]
J.E. Dutrizac, Effectiveness of jarosite species for precipitating sodium jarosite, JOM. 51 (1999) 30-32.
DOI: 10.1007/s11837-999-0168-6
Google Scholar
[13]
F. Elgersma, G.J. Witkamp, G.M. van Rosmalen, Incorporation of zinc in continuous jarosite precipitation, Hydrometallurgy. 33 (1993) 313-339.
DOI: 10.1016/0304-386x(93)90070-t
Google Scholar
[14]
K.A. Hudson-Edwards, K. Wright, Computer simulations of the interactions of the (012) and (001) surfaces of jarosite with Al, Cd, Cu2+ and Zn, Geochim. Cosmochim. Acta. 75 (2011) 52-62.
DOI: 10.1016/j.gca.2010.10.004
Google Scholar
[15]
W. W. Kunda, H. Veltman, Decomposition of Jarosite, Metall. Trans. B. 10 (1979) 439-446.
Google Scholar
[16]
M. Kerolli-Mustafa, M. Vilco, L. Curkovic, J. Sipusic, Investigation of thermal decomposition of jarosite tailing waste, J Therm. Anal. Calorim. 123 (2016) 421–430.
DOI: 10.1007/s10973-015-4881-9
Google Scholar
[17]
J.E. Dutrizac, Converting jarosite residues into compact hematite products, JOM. 42 (1990) 36-39.
DOI: 10.1007/bf03220521
Google Scholar
[18]
J. Bohacek, Preparing particulate magnetites with pigment properties from suspicions of basic iron (III) sulfates with the structure of jarosite, J. Mater. Sci. 28 (1993) 2827-2832.
DOI: 10.1007/bf00356226
Google Scholar
[19]
H. Vu, J. Jandova, T. Hron, Recovery of pigment-quality magnetite from jarosite precipitates, Hydrometallurgy, 10 (2010) 1-6.
DOI: 10.1016/j.hydromet.2009.10.007
Google Scholar
[20]
J.L.T. Hage, R.D. Shuiling, S.P. Vriend, Production of magnetite from sodium jarosite under reducing hydrothermal conditions. The reduction of Fe(III) to Fe(II) with cellulose, Can. Metall. Quart. 38 (1999) 267-276.
DOI: 10.1179/cmq.1999.38.4.267
Google Scholar
[21]
Y.M. Shneerson, V.F. Kozyrev, L.V. Chugaev, A.Y. Lapin, K.A. Plekhanov, G.V. Skopov, A.B. Lebed, G.P. Kharitidi, V.D. Shevelev, RU Patent 2365641. (2009).
Google Scholar