Scientific Approaches to the Development of Titanium-Based Alloys for Medical Implants

Article Preview

Abstract:

One of the main problems with the use of metal implants is mechanical resorption, due to a significant difference in Young's moduli of bone tissue and metal material. This paper provides an overview of the main approaches for developing and optimizing the compositions of low-modulus alloys for medical implants. The choice of the base metal of such alloys – titanium, combining a low Young's modulus with complete biological inertness, -- is substantiated. Based on the analysis and systematization of the available literature data, the issues of choosing the optimal alloying to achieve a low Young's modulus, while maintaining biological compatibility, are considered. The main attention is paid to the Ti-Nb-Zr- (Ta, Sn) system as providing the maximum potential for reducing the Young's modulus. In addition, the importance of obtaining a certain structural and textural state in the product to further reduce the Young's modulus is noted.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

462-467

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Mohsin Talib Mohammed, Zahid A. Khan, Arshad N. Siddiquee, Beta Titanium Alloys: the Lowest Elastic Modulus for Biomedical Applications: a Review, World Academy of Science, Engineering and Technology, International Journal of Chemical, Nuclear, Metallurgical and Materials Engineering, 8(8) (2014) 726-731.

Google Scholar

[2] A. Illarionov, S. Belikov, S. Grib, A. Yurovskikh, Metallic materials for medical use, MATEC Web of Conferences, 132 (2017) 03003.

DOI: 10.1051/matecconf/201713203003

Google Scholar

[3] A.A. Popov, A.G. Illarionov, S.V. Grib, O.A. Elkina, O.M. Ivasishin, P.E. Markovskii, I.A. Skiba, Effect of heat treatment and plastic deformation on the structure and elastic modulus of a biocompatible alloy based on zirconium and titanium, Physics of Metals and Metallography. 113(4) (2012) 382-390.

DOI: 10.1134/s0031918x12040102

Google Scholar

[4] G.L. Burke, The corrosion of metals in tissues; and an introduction to tantalum.Can. Med. Assoc. J. 43 (1940) 125–128.

Google Scholar

[5] A. Biesiekierski , J. Wang, MAH Gepreel, C. Wen, A new look at biomedical Ti-based shape memory alloys, Acta Biomater. 8 (2012)1661–1669.

DOI: 10.1016/j.actbio.2012.01.018

Google Scholar

[6] Emsley J, The Elements. Clarendon Press, Oxford, (1991).

Google Scholar

[7] B.A. Kolachev, V.I. Yelagin, V.A. Livanov, Metal science and heat treatment of non-ferrous metals and alloys, Moscow, MISIS, (1999).

Google Scholar

[8] M.A. Shtremel, Alloy strength. Part 1. Defects of the lattice Moscow, MISIS, (1999).

Google Scholar

[9] M. Abdel-Hady, M. Niinomi, Biocompatibility of Ti-alloys for long-term implantation, Journal of the Mechanical Behavior of Biomedical Materials, 20 (2013) 407-415.

DOI: 10.1016/j.jmbbm.2012.11.014

Google Scholar

[10] S.G. Glazunov, Modern titanium alloys, Metal Science and Heat Treatment, 5(2) (1963) 69-73.

Google Scholar

[11] E.W. Collings, The Physical Metallorgy of Titanium Alloys, ASM, Metals Park, (1984).

Google Scholar

[12] S.G. Fedotov, O.K. Belousov, Elastic constants in the system titanium-niobium, Physics of Metals and Metallography, (1964) 17(5) 732-736.

Google Scholar

[13] A.G. Illarionov, S.V. Grib, S.M. Illarionova, A.A. Popov, Relationship between structure, phase composition and physicomechanical properties in quenched Ti-Nb alloys, Physics of Metals and Metallography, 120(2) (2019) 156-162.

DOI: 10.1134/s0031918x19020054

Google Scholar

[14] Y.L. Zhou, M. Niinomi, T. Akahori, Effects of Ta content on Young's modulus and tensile properties of binary Ti-Ta alloys for biomedical applications, Materials Science and Engineering F 371 (2004) 283-290.

DOI: 10.1016/j.msea.2003.12.011

Google Scholar

[15] S. Hanada, H. Matsumoto, S. Watanabe, Mechanical compatibility of titanium implants in hard tissues, International Congress Series 1284 (2005) 239-247.

DOI: 10.1016/j.ics.2005.06.084

Google Scholar

[16] V.N. Moiseev, Trends in the development of hardening heat treatments for titanium alloys, Metal Science and Heat Treatment, 19(10) (1977) 899-904.

DOI: 10.1007/bf00670567

Google Scholar

[17] M. Morinaga, N. Yukawa, T. Maya, K. Sone, H. Adachi, Theoretical design of titanium alloys. In: Proc. the 6th World Conference on Titanium, Cannes, France, (1988) 1601-1606.

Google Scholar

[18] Yuhua Li, Chao Yang , Haidong Zhao, Shengguan Qu, Xiaoqiang Li, Yuanyuan Li, New developments of Ti-based alloys for biomedical applications, Materials, 7(3) (2014) 1709-1800.

DOI: 10.3390/ma7031709

Google Scholar

[19] N. Sakaguchi, M. Niinomi, T. Akahori, J.Takeda, H. Toda, Effect of Ta content on mechanical properties of Ti-30Nb-XTa-5Zr, Mater. Sci. Eng. C, 25 (2005) 370-376.

DOI: 10.1016/j.msec.2005.04.003

Google Scholar

[20] T. Ozaki, et al., Development of beta titanium alloys with low Young's modulus, Presented at Materials and Processes for Medical Devices Conference, ASM, St. Paul, USA (2003).

Google Scholar

[21] V.R. Jablokov, N.G.D. Murray, H.J. Rack, H.L. Freese, Influence of oxygen content on the mechanical properties of Titanium-35Niobium-7Zirconium-5Tantalum beta titanium alloy. J. ASTM Int. 2 (2005) 1-12.

DOI: 10.1520/jai12776

Google Scholar

[22] Hiroaki Matsumoto, Sadao Watanabe and Shuji Hanada, Beta TiNbSn alloys with low Young's modulus and high strength, materials transactions, 46(5) (2005) 1070-1078.

DOI: 10.2320/matertrans.46.1070

Google Scholar

[23] M. Abdel-Hady, K. Hinoshita, M. Morinaga, General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters, Scripta Materiala, (2006) 476–480.

DOI: 10.1016/j.scriptamat.2006.04.022

Google Scholar

[24] B. Predel, Ti-Zr (Titanium-Zirconium). In: Madelung O. (eds) Pu-Re – Zn-Zr. Landolt-Börnstein - Group IV Physical Chemistry (Numerical Data and Functional Relationships in Science and Technology), J. Springer, Berlin, Heidelberg, 5 (1998).

DOI: 10.1007/10551312_2847

Google Scholar

[25] H. Okamoto, Sn-Ti (Tin-Titanium) J. Phase Equilib. Diffus. 31 (2010) 202.

DOI: 10.1007/s11669-010-9663-2

Google Scholar

[26] X. Wang, L.G. Zhang, Z.Y. Guo, Y. Jiang, X.M. Tao, L.B. Liu, Study of low-modulus biomedical β Ti–Nb–Zr alloys based on single-crystal elastic constants modeling, Journal of the Mechanical Behavior of Biomedical Materials, 62 (2016) 310-318.

DOI: 10.1016/j.jmbbm.2016.04.040

Google Scholar

[27] M. Niinomi, Low modulus titanium alloys for Inhibiting bone atrophy, Chapter 12 In book: Biomaterials Science and Engineering, (2011).

DOI: 10.5772/24549

Google Scholar