[1]
M.I. Alymov, Powder Metallurgy of Nanocrystalline Materials, Science, Moscow, (2007).
Google Scholar
[2]
A.V. Aborkin, I.A. Evdokimov, V.E. Vaganov, M.I. Alymov, D.V. Abramov, K.S. Khor'kov, Influence of Mechanical Activation Mode on Morphology and Phase Composition of Al-2Mg-nC Nanostructured Composite Material, Nanotechnologies in Russia 11 (2016) 297–304.
DOI: 10.1134/s1995078016030022
Google Scholar
[3]
A.V. Aborkin, M.I. Alymov, A.V. Kireev, A.I. Elkin, A.V. Sobol'kov, Mechanically Synthesized Composite Powder Based on AMg2 Alloy with Graphite Additives: Particle Size Distribution and Structural-Phase Composition, Nanotechnologies in Russia 12 (2017) 395–399.
DOI: 10.1134/s1995078017040024
Google Scholar
[4]
A.V. Aborkin, A.V. Sobol'kov, A.I. Elkin, V.E. Arkhipov, Structural phase composition and effectiveness of gas-dynamic spraying of hybrid coatings based on AlMg2 nanocrystalline matrix reinforced with graphene-like structures and micro-size corundum, J. Phys.: Conf. Ser. 951 (2018) 012010.
DOI: 10.1088/1742-6596/951/1/012010
Google Scholar
[5]
A.V. Aborkin, A.V. Sobol'kov, A.V. Kireev, A.T. Volochko, A.Yu. Izobello, N V. Sachkova, A.E. Sytschev, Morphology, granulometric and structural phase composition of mechanically synthesized composite powder Al-Mg+Al/MWCNTs, J. Phys.: Conf. Ser. 951 (2018) 012008.
DOI: 10.1088/1742-6596/951/1/012008
Google Scholar
[6]
A.V. Aborkin, M.I. Alymov, V.E. Arkhipov, D.S. Khrenov, Formation of Heterogeneous Powder Coatings with a Two-Level Micro- and Nanocomposite Structure under Gas-Dynamic Spraying Conditions, Doklady Physics 63 (2018) 50–54.
DOI: 10.1134/s102833581802009x
Google Scholar
[7]
A.V. Aborkin, D.M. Babin, A.V. Sobol`kov, Comparison of mechanical and friction properties of composite materials based on AlMg2 containing nanodimensional particles of crystalline graphite and nanofibers of gamma oxide of aluminum, IOP Conf. Ser.: Mater. Sci. Eng. 347 (2018) 012037.
DOI: 10.1088/1757-899x/347/1/012037
Google Scholar
[8]
A.V. Aborkin, M.I. Alymov, A.V. Kireev, A.V. Sobol'kov, V.E. Arkhipov, Structure and efficiency of gas-dynamic deposition of hybrid coatings based on a nanocrystalline aluminum matrix, Metallurgist 62 (2018) 809-814.
DOI: 10.1007/s11015-018-0723-x
Google Scholar
[9]
A.V. Aborkin, M.I. Alymov, A.V. Sobol'kov, K.S. Khor'kov, D.M. Babin, Effect of the Thermomechanical Treatment Conditions on the Consolidation, the Structure, and the Mechanical Properties of Bulk Al–Mg–C Nanocomposites, Russian Metallurgy (Metally) 2018 (2018) 625–632.
DOI: 10.1134/s0036029518070029
Google Scholar
[10]
P.P. Chattopadhyay, I.I. Manna, S. Talapatra, S.K. Pabi, A mathematical analysis of milling mechanics in a planetary ball mill, Materials Chemistry and Physics 68 (2001) 85–94.
DOI: 10.1016/s0254-0584(00)00289-3
Google Scholar
[11]
A. Sato, J. Kano, F. Saito, Analysis of abrasion mechanism of grinding media in a planetary mill with DEM simulation, Advanced Powder Technology 21 (2010) 212–216.
DOI: 10.1016/j.apt.2010.01.005
Google Scholar
[12]
X. Jiang, M.A. Trunov, M. Schoenitz, R.N. Dave, E.L. Dreizin, Mechanical alloying and reactive milling in a high energy planetary mill, Journal of Alloys and Compounds, 478 (2009) 246–251.
DOI: 10.1016/j.jallcom.2008.12.021
Google Scholar
[13]
H. Ashrafizadeh, M. Ashrafizaadeh, Influence of processing parameters on grinding mechanism in planetary mill by employing discrete element method, Advanced Powder Technology 23 (2012) 708–716.
DOI: 10.1016/j.apt.2011.09.002
Google Scholar
[14]
Y.T. Feng, K. Han, D.R.J. Owen, Discrete element simulation of the dynamics of high energy planetary ball milling processes, Materials Science and Engineering A 375 (2004) 815–819.
DOI: 10.1016/j.msea.2003.10.162
Google Scholar
[15]
A.S. Rogachev, D.O. Moskovskikh, A.A. Nepapushev, T.A. Sviridova, S.G. Vadchenko, S.A. Rogachev, A.S. Mukasyan, Experimental investigation of milling regimes in planetary ball mill and their influence on structure and reactivity of gasless powder exothermic mixtures, Powder Technology 212 (2011) 224–230.
DOI: 10.1016/j.powtec.2015.01.009
Google Scholar
[16]
S. Rosenkranz, S. Breitung-Faes, A. Kwade, Experimental investigations and modelling of the ball motion in planetary ball mills, Powder Technology 212 (2011) 224–230.
DOI: 10.1016/j.powtec.2011.05.021
Google Scholar
[17]
A. Concas, N. Lai, M. Pisu, G. Cao, Modelling of comminution processes in Spex Mixer/Mill, Chemical Engineering Science 61 (2006) 3746–3760.
DOI: 10.1016/j.ces.2006.01.007
Google Scholar
[18]
L.M. Tavares, R.M. de Carvalho, Modeling breakage rates of coarse particles in ball mills, Minerals Engineering 22 (2009) 650–659.
DOI: 10.1016/j.mineng.2009.03.015
Google Scholar
[19]
N. Burgio, A. Iasonna, M. Magini, S. Martelli, F. Padella, Mechanical Alloying of the Fe-Zr System. Correlation between Input Energy and End Products, Il nuovo cimento 13 (1991) 459–476.
DOI: 10.1007/bf02452130
Google Scholar
[20]
V. Kuzmich, V.G. Korotkov, Model Of energy characteristics of the planetary mill, Chemistry and materials science 31 (2015) 380–384.
Google Scholar
[21]
P.P. Chattopadhyay, I. Mannaa, S. Talapatra, S.K. Pabi, A mathematical analysis of milling mechanics in a planetary ball mill, Materials Chemistry and Physics 68 (2001) 85–94.
DOI: 10.1016/s0254-0584(00)00289-3
Google Scholar