[1]
J.C. Baker, J., J. W. Cahn, Solute Trapping by Rapid Solidification, Acta Met. 17 (1969) 575.
Google Scholar
[2]
M.J. Aziz, Model forsoluteredistributionduring rapid solidification, JAppl.Phys. 53 (2) (1982) 1158-1168.
Google Scholar
[3]
D.M. Herlach, P. Galenko, D. Holland-Moritz, Metastable Solids from Undercooled Melts, Elsevier, Amsterdam, (2007).
DOI: 10.1016/s1470-1804(07)80023-x
Google Scholar
[4]
H. Garcke, B. Nestler, B. Stinner, A diffuse interface model for alloys with multiple components and phases,SIAM J Appl. Math. 64, 3 (2004) 775.
DOI: 10.1137/s0036139902413143
Google Scholar
[5]
P. K. Galenko, H. Gomez, N. V. Kropotin,Unconditionally stable method and numerical solution of the hyperbolic phase-field crystal equation, Phys. Rev. E, 88 (2013) 013310.
DOI: 10.1103/physreve.88.013310
Google Scholar
[6]
C.V. Thompson, F. Spaepen,Homogeneous crystal nucleation in binary metallic melts, Acta Metallurgica, 31 (1983) 2021-2027.
DOI: 10.1016/0001-6160(83)90019-6
Google Scholar
[7]
I.S. Miroshnichenko, Quenching from Liquid State, Metallurgia, Moscow, (1984).
Google Scholar
[8]
M.V. Dudorov, Decomposition of crystal-growth equations in multicomponent melts,J. CrystalGrowth 396 (2014) 45-49.
DOI: 10.1016/j.jcrysgro.2014.03.035
Google Scholar
[9]
S. R. deGroot, P. Mazur, Non-Equilibriumthermodynamics, Dover, NewYork, (1984).
Google Scholar
[10]
D. Drozin, Growth of Microparticles of the Products of Chemical Reactions in a Liquid Solution: Monograph, YuUrGU, Chelyabinsk, (2007).
Google Scholar
[11]
A. D. Drozin, The kinetics of nucleation of a new phase as a result of the chemical interaction of the components in the solution, Russian Metallurgy (Metally), 5 (1977) 97.
Google Scholar
[12]
A.D. Drozin, Mathematical model for the growth of deoxidation products in a liquid metal, Russian Metallurgy (Metally), 6 (1987) 19-22.
Google Scholar
[13]
P.A. Gamov, A.D. Drozin, M.V. Dudorov,Model for Nanocrystal Growth in an Amorphous Alloy, Russian Metallurgy (Metally), (2012) 1002-1005.
DOI: 10.1134/s0036029512110055
Google Scholar
[14]
P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations, Mir, Moscow, (1973).
Google Scholar
[15]
I. Prigogine, R. Defay, Chemical Thermodynamics, Longmans Green, London, (1954).
Google Scholar
[16]
S. Kjelstrup, D. Bedeaux, Non-equilibrium Thermodynamics of Heterogeneous Systems, Series on Advances in Statistical MechanicsVol. 16, World Scientific, Singapore, (2008).
DOI: 10.1142/6672
Google Scholar
[17]
L.D. Landau, E.M. Lifshitz. Course of Theoretical Physics,. Vol. 1. Mechanics,Nauka, Moscow, (1982).
Google Scholar
[18]
C. Lanczos, The Variational Principles of Mechanics, Toronto University Press, (1964).
Google Scholar
[19]
Y. Yoshizawa, S. Oguma, K. Yamauchi, New Fe based soft magnetic alloys composed of ultrafine grain structure, J. Appl. Phys. 64 (1988) 6044.
DOI: 10.1063/1.342149
Google Scholar
[20]
Y. Yoshizawa, K. Yamauchi,Mechanical Properties and Thermal Stability of (Fe, Co, Ni)-MB (M=IV, V and VI Group Transition Metals) Amorphous Alloys with Low Boron Concentration, IEEE Translation. J. On Magnetics 5 (1990) 1070.
Google Scholar
[21]
G. Herzer, Nanocrystalline soft magnetic materials,Phys. Scr. 49 (1993) 307.
Google Scholar
[22]
Yu.N. Goykhenberg, P.A. Gamov, M.V. Dudorov, V.E. Roshchin, The structure of 5BDSr amorphized alloy Used to make the nanocrystalline tape, Bul.SUSU. Metallurgy, 39 (2012) 128-133.
Google Scholar