Effect of Friction on Compression Test of Ti-6Al-4V with Open-Cellular Structure

Article Preview

Abstract:

The compression test data are represented for a cellular Ti-6Al-4V titanium alloy, manufactured using laser powder bed fusion on EOSINT 280. The inhomogeneity of deformation was revealed in the form of a barrel of the side surfaces during the test. The problem was simulated by the finite element method for two formulations: the compression of cellular material with friction and without friction. A comparison of the stress-strain state of the two cases was made. The same inhomogeneity of deformation is achieved, both in the experiment and in the analytical solution.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

452-456

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, Y. M. Xie, Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review, Biomaterials, 83 (2016) 127-141.

DOI: 10.1016/j.biomaterials.2016.01.012

Google Scholar

[2] F.S.L. Bobbert, K. Lietaert, A.A. Eftekhari, B.Pouran, S.M. Ahmadi, H.Weinans, A.A Zadpoor, Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties, Acta Biomaterialia, 53 (2017) 572–584.

DOI: 10.1016/j.actbio.2017.02.024

Google Scholar

[3] R. Wauthle, J. Van der Stok, S. A. Yavari, J. Van Humbeeck, J.-P. Kruth, A. A. Zadpoor, H. Weinans, M. Mulier, J. Schrooten, Additively manufactured porous tantalum implants, Acta Biomater, 14 (2015) 217–225.

DOI: 10.1016/j.actbio.2014.12.003

Google Scholar

[4] K. Moiduddin, A. Al-Ahmari, M. Al Kindi, E.S. A.Nasr, A. Mohammad, S. Ramalingame, Customized porous implants by additive manufacturing for zygomatic reconstruction, Biocybernetics and Biomedical Engineering, 36 (2016) 719 – 730.

DOI: 10.1016/j.bbe.2016.07.005

Google Scholar

[5] S. I. Stepanov, Y. N. Loginov, V. P.Kuznetsov, A. A. Popov, Effect of Annealing on the Structure and Properties of Titanium Alloy with Cellular Architecture for Medical Applications, Metal Science and Heat Treatment, 60(5-6) (2018) 315-321.

DOI: 10.1007/s11041-018-0278-2

Google Scholar

[6] A. Yánez, A. Herrera, O. Martel, D. Monopoli, H. Afonso, Compressive behaviour of gyroid lattice structures for human cancellous bone implant applications, Materials Science and Engineering: C.68 (2016) 445-448.

DOI: 10.1016/j.msec.2016.06.016

Google Scholar

[7] G. Ryan, A. Pandit, D.P. Apatsidis, Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials, 27 (2006) 2651–2670.

DOI: 10.1016/j.biomaterials.2005.12.002

Google Scholar

[8] Mechanical testing of metals - Ductility testing - Compression test for porous and cellular metals (ISO 13314:2011), Technical Committee: ISO/TC 164/SC 2 (2011).

DOI: 10.3403/30203544

Google Scholar

[9] A. I. Golodnov, Y. N. Loginov, S. I. Stepanov, Numeric loading simulation of titanium implant manufactured using 3d printing, Solid State Phenomena, 284 (2018) 380-385.

DOI: 10.4028/www.scientific.net/ssp.284.380

Google Scholar

[10] Y. N. Loginov, A. I. Golodnov, S. I. Stepanov, E. Yu. Kovalev, Determining the Young's modulus of a cellular titanium implant by FEM simulation, AIP Conference Proceedings, 1915 (2017) 030010.

DOI: 10.1063/1.5017330

Google Scholar

[11] C. Han, Y. Li, Q. Wang, S. Wen, Q. Wei, C. Yan, L. Hao, J. Liu, Y. Shi, Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants, Journal of the Mechanical Behavior of Biomedical Materials, 80 (2018) 119-127.

DOI: 10.1016/j.jmbbm.2018.01.013

Google Scholar