[1]
X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, Y. M. Xie, Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review, Biomaterials, 83 (2016) 127-141.
DOI: 10.1016/j.biomaterials.2016.01.012
Google Scholar
[2]
F.S.L. Bobbert, K. Lietaert, A.A. Eftekhari, B.Pouran, S.M. Ahmadi, H.Weinans, A.A Zadpoor, Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties, Acta Biomaterialia, 53 (2017) 572–584.
DOI: 10.1016/j.actbio.2017.02.024
Google Scholar
[3]
R. Wauthle, J. Van der Stok, S. A. Yavari, J. Van Humbeeck, J.-P. Kruth, A. A. Zadpoor, H. Weinans, M. Mulier, J. Schrooten, Additively manufactured porous tantalum implants, Acta Biomater, 14 (2015) 217–225.
DOI: 10.1016/j.actbio.2014.12.003
Google Scholar
[4]
K. Moiduddin, A. Al-Ahmari, M. Al Kindi, E.S. A.Nasr, A. Mohammad, S. Ramalingame, Customized porous implants by additive manufacturing for zygomatic reconstruction, Biocybernetics and Biomedical Engineering, 36 (2016) 719 – 730.
DOI: 10.1016/j.bbe.2016.07.005
Google Scholar
[5]
S. I. Stepanov, Y. N. Loginov, V. P.Kuznetsov, A. A. Popov, Effect of Annealing on the Structure and Properties of Titanium Alloy with Cellular Architecture for Medical Applications, Metal Science and Heat Treatment, 60(5-6) (2018) 315-321.
DOI: 10.1007/s11041-018-0278-2
Google Scholar
[6]
A. Yánez, A. Herrera, O. Martel, D. Monopoli, H. Afonso, Compressive behaviour of gyroid lattice structures for human cancellous bone implant applications, Materials Science and Engineering: C.68 (2016) 445-448.
DOI: 10.1016/j.msec.2016.06.016
Google Scholar
[7]
G. Ryan, A. Pandit, D.P. Apatsidis, Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials, 27 (2006) 2651–2670.
DOI: 10.1016/j.biomaterials.2005.12.002
Google Scholar
[8]
Mechanical testing of metals - Ductility testing - Compression test for porous and cellular metals (ISO 13314:2011), Technical Committee: ISO/TC 164/SC 2 (2011).
DOI: 10.3403/30203544
Google Scholar
[9]
A. I. Golodnov, Y. N. Loginov, S. I. Stepanov, Numeric loading simulation of titanium implant manufactured using 3d printing, Solid State Phenomena, 284 (2018) 380-385.
DOI: 10.4028/www.scientific.net/ssp.284.380
Google Scholar
[10]
Y. N. Loginov, A. I. Golodnov, S. I. Stepanov, E. Yu. Kovalev, Determining the Young's modulus of a cellular titanium implant by FEM simulation, AIP Conference Proceedings, 1915 (2017) 030010.
DOI: 10.1063/1.5017330
Google Scholar
[11]
C. Han, Y. Li, Q. Wang, S. Wen, Q. Wei, C. Yan, L. Hao, J. Liu, Y. Shi, Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants, Journal of the Mechanical Behavior of Biomedical Materials, 80 (2018) 119-127.
DOI: 10.1016/j.jmbbm.2018.01.013
Google Scholar