How the Material Thickness Affects 0.08% Carbon Cold-Rolled Sheet Steel

Article Preview

Abstract:

The authors hereof have studied how the thickness of 0.08% carbon cold-rolled sheet steel affects its properties. They experimented with tensioning such sheets and plotted the metal hardening curves. The paper presents comparative analysis of how the material thickness affects the coefficients approximating the hardening curves. A comparison of the hardening curves of control and annealed specimens is given. Experiments have identified the effects that the pre-accumulated plastic strain has on the material properties. It is revealed that lower thickness alters the force parameters of the process and affects the ultimate tensile strain. The paper formulates recommendations on using the estimates obtained by the software simulation of the deformation process. Hardening-curve coefficients approximation functions are proposed in order to predict how changing the thickness would affect the material properties.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

409-417

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Petrov M. Umformen eines Verbundwerkstoffs aus Stahlblechen / M. Petrov, S. Tipalin, J. Bast, P. Petrov, N. Kosatschjov, S. Guk. // Konstruktion. – 2012. –.

DOI: 10.1365/s35725-012-0023-5

Google Scholar

[2] S. Experimental study of V-bending process of steel-polymer-steel sheets at room temperature / S. Tipalin, M. Nikitin, N. Schpunkin. // Computer Methods in Materials Science. – (2008).

Google Scholar

[3] Tipalin S.A. Springing a Multilayer Material (Pruzhineniye mnogosloynogo materiala) / S.A. Tipalin, B.Yu. Saprykin // Bulletin of MSTU MAMI. – 2013. – Vol. 2, Issue 2(16).

DOI: 10.17816/2074-0530-68214

Google Scholar

[4] Wen T, Daxin E (2004) Application of FEM on the study of material flowing deformation rule in the process of rectangular cup drawing. Mod Manuf Eng 4:.

Google Scholar

[5] Tipalin, S.A., Petrov, M.A., Shpunkin, N.F. the influence of the deformation speed on hardening process during the cold sheet forming // Solid State Phenomena – 2018- 284 SSP.

DOI: 10.4028/www.scientific.net/ssp.284.513

Google Scholar

[6] S, Alves JL, Oliveira MC, Menezes LF (2005) Modeling of anisotropic work-hardening behavior of metallic materials subjected to strain-path changes. Mat Sci 32:301–315.

DOI: 10.1016/j.commatsci.2004.09.038

Google Scholar

[7] Kalpin Yu.G., Perfilov V.I., Petrov P.A., Ryabov V.A., Filippov Yu.K. Resistance to Deformation and the Plasticity of Pressure-Deformed Metals (Soprotivleniye deformatsii i plastichnost metallov pri obrabotke davleniyem) – Moscow: MSTU: MAMI, 2007 – 113 p.

Google Scholar

[8] Vereshchagin P.V. Mechanical Tests. Guidelines on Laboratory Sessions (Mekhanicheskiye ispytaniya. Metodicheskiye rekomendatsii k vyp-yu lab. praktikuma) – Moscow: Polzunov Altai State Technical University, 2014 – 45 p.

Google Scholar

[9] F.V. Grechnikov, A.N. Dmitriyev, V.D. Kukhar et al. Ed. by A.G. Ovchinnikov. Progressive Cold-Stamping Processes (Progressivnye tekhnologicheskiye protsessy kholodnoy shtampovki). Moscow: Mashinostroyeniye, 1985. – 184 p.

Google Scholar

[10] Tomasz Trzepieciński, Hirpa G. Lemu, Investigation of anisotropy problems in sheet metal forming using finite element method, 2011, p.13.

Google Scholar

[11] Banabic D, Bunge H-J, Pohlandt K, Tekkaya AE (2000) Formability of Metallic Materials: plastic anisotropy, formability testing, forming limits. Springer-Verlag, Berlin Heidelberg.

DOI: 10.1007/978-3-662-04013-3

Google Scholar

[12] Friedman Ya.B. Mechanical Properties of Metals. Part Two. Mechanical Tests. Structural Strength (Mekhanicheskiye svoystva metallov. Chast 2. Mekhanicheskiye ispytaniya. Konstruktsionnaya prochnost). – Moscow: Mashinostroyeniye, 1972. – 368 p.

Google Scholar

[13] Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc Lond Ser A 193.

Google Scholar

[14] Chudina O.V. Ch842 Choosing Materials and Methods to Harden Parts in Transport Engineering (Vybor materialov i metodov uprochneniya detaley transportnogo mashinostroyeniya): tutorial / O.V. Chudina, G.V. Gladova. – Moscow: MADI, 2015. – 120 p.

Google Scholar

[15] Brunet M, Morestin F, Walter-Leberre H (2005) Failure analysis of anisotropic sheet-metals using non-local plastic damage model. Mat Proc Technol 170.

DOI: 10.1016/j.jmatprotec.2005.05.046

Google Scholar

[16] Houutte P (1992) Anisotropic plasticity. : P, Pillingar I, Sturgess C (eds) Numerical modeling of material deformation process: research, development and applications. Springer-Verlag, London.

Google Scholar

[17] Adamescu R.A., Geld P.W., Mitjushov Je.A. Anisotropy in the Physical Properties of Metals (Anizotropiya fizicheskikh svoystv metallov). – Moscow: Metallurgiya, 1985. – 136 p.

Google Scholar

[18] Zhiying C, Xianghuai D (2009) The GTN damage model based on Hill'48 anisotropic yield criterion and its application in sheet metal forming. Comp Mat Sci 44.

DOI: 10.1016/j.commatsci.2008.07.020

Google Scholar

[19] Bernstein M.L., Zaymovsky M.A. Mechanical Properties of Metals (Mekhanicheskiye svoystva metallov), – Moscow: Metallurgiya, 1979. – 496 p.

Google Scholar

[20] Romanovsky V.P., Handbook of Cold Stamping (Spravochnik po kholodnoy shtampovke). – 6th ed, revised and updated. – Leningrad: Mashinostroyeniye. Leningrad Branch, 1979. – 520 p.

Google Scholar

[21] Shpunkin N.F. Studying the Properties of Multilayer Sheet Materials (Issledovaniye svoystv mnogosloynykh listovykh materialov) / N.F. Shpunkin, S.A. Tipalin // Journal of Blanking in Mechanical Engineering (Zagotovitelnye proizvodstva v mashinostroyenii). – 2013. – Issue 1.

Google Scholar

[22] Aryshensky Yu.M., Grechnikov F.V. Theory and Computations of Plastic Deforming of Anisotropic Materials (Teoriya i raschety plasticheskogo formoizmeneniya anizotropnykh materialov) / Ed. by F.V. Grechnikov. – Moscow: Metallurgiya, 1990. – 304 p.

Google Scholar

[23] Mikheyev V.A., Zaytsev V.M. Anisotropic Materials (Anizotropnye materialy). E-book. – Samara University, 2012. – 79 p.

Google Scholar

[24] Storozhev M.V., Popov Ye.A. Theory of Metal Machining by Pressure (Teoriya obrabotki metallov davleniyem). Moscow: Mashinostroyeniye, 1971, 424 p.

Google Scholar

[25] Adamescu R.A., Geld P.W., Mitjushov Je.A. Anisotropy in the Physical Properties of Metals (Anizotropiya fizicheskikh svoystv metallov). – Moscow: Metallurgiya, 1985. – 136 p.

Google Scholar

[26] Shpunkin N.F. Improved Methods of Stamping Car-Body Parts by Stretching While Tensioning and Finding the Stampability of Sheets (Sovershenstvovaniye metodov shtampovki avtokuzovnykh detaley obtyazhkoy s rastyazheniyem i opredeleniya shtampuyemosti lista): Thesis of a Candidate of Technical Sciences: March 5, 2005. – Moscow, 1981. – 180 p.

Google Scholar

[27] Tipalin S.A. Finding Accumulated Strain When Extruding a Process Groove (Opredeleniye nakoplennoy deformatsii v protsesse vydavlivaniya tekhnologicheskoy kanavki) / S.A. Tipalin // Journal of Blanking in Mechanical Engineering (Zagotovitelnye proizvodstva v mashinostroyenii). – 2013. – Issue 8.

Google Scholar

[28] Tipalin S. Numerical and experimental investigation of deep drawing of sandwich panels / S. Tipalin, M. Petrov, B. Saprikin, N. Kosatchyov, N. Shpunkin, P. Petrov // Key Engineering Materials. – 2014. – P. 1627-1636.

DOI: 10.4028/www.scientific.net/kem.611-612.1627

Google Scholar

[29] Petrov M.A., Basyuk T.S., Petrov A.N., Petrov P.A. Experimental investigations on the relation of the lubricant's flash point and quality of the piston made from aluminium alloy for its application in internal combustion engines. / Key Engineering Materials, Vol. 651 – 653, 2015, p.297 – 304.

DOI: 10.4028/www.scientific.net/kem.651-653.297

Google Scholar

[30] PetrovM., Petrov P., Voronkov V., Grishin D. Numerical investigation of the hot isothermal process and force size-effect of a clutch-half forming/ Key Engineering Materials, 611-612, 2014, p.1608 – 1616.

DOI: 10.4028/www.scientific.net/kem.611-612.1608

Google Scholar