[1]
H. Gleiter, Nanostructured materials: basic concepts and microstructure, Acta Mater., 48 (2000) 1-29.
Google Scholar
[2]
Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Mater, 61 (2013) 782–817.
DOI: 10.1016/j.actamat.2012.10.038
Google Scholar
[3]
R.Z. Valiev, A.P. Zhilyaev, T.G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications. TMS, Wiley, Hoboken, New Jersey, USA, (2014).
Google Scholar
[4]
R.Z. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nature Mater, 3 (2004) 511-516.
DOI: 10.1038/nmat1180
Google Scholar
[5]
M. Kawasaki, T.G. Langdon, Principles of superplasticity in ultrafine-grained materials. J. Mater Sci., 42 (2007) 1782-1796.
DOI: 10.1007/s10853-006-0954-2
Google Scholar
[6]
X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, R.Z. Valiev, Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater. Sci. Eng. A 540 (2012) 1-12.
DOI: 10.1016/j.msea.2012.01.080
Google Scholar
[7]
R.Z. Valiev, R. Sh Musalimov, High-resolution transmission electron microscopy of nanocrystalline materials, Phys. Met. Metallogr., 78 (1994) 666-670.
Google Scholar
[8]
Yu.R. Kolobov, G.P. Grabovetskaya, M.B. Ivanov, A.P. Zhilyaev, R.Z. Valiev, Grain boundary diffusion characteristics of nanostructured nickel. Scripta Mater, 44 (2001) 873-878.
DOI: 10.1016/s1359-6462(00)00699-0
Google Scholar
[9]
V.V. Popov, V.N. Kaigorodov, E.N. Popova, A.V. Stolbovsky. Mossbauer emission spectroscopy of grain boundaries in poly- and nanocrystalline niobium. Bull. RAS: Physics, 71(9) (2007) 1244-1248.
DOI: 10.3103/s1062873807090110
Google Scholar
[10]
V.V. Popov, V.N. Kaigorodov, E.N. Popova, A.V. Stolbovsky NGR Investigation of Grain-Boundary Diffusion in Poly- and Nanocrystalline Nb. Defect and Diffusion Forum. 263 (2007) 69-74.
DOI: 10.4028/www.scientific.net/ddf.263.69
Google Scholar
[11]
G. Wilde, J. Ribbe, G. Reglitz, M. Wegner, H. Rösner, Y. Estrin, M. Zehetbauer, D. Setman, S. Divinski. Plasticity and grain boundary diffusion at small grain sizes. Adv. Eng. Mater. 12 (2010) 758-764.
DOI: 10.1002/adem.200900333
Google Scholar
[12]
A.V. Stolbovskii, E.N. Popova, Study of the Grain Boundary Structure in Submicrocrystalline Niobium after Equal-Channel Angular Pressing, Bull. Russ. Acad. Sci. Phys. 74 (2010) 388-392.
DOI: 10.3103/s1062873810030159
Google Scholar
[13]
V.V. Popov. Mössbauer Spectroscopy of Grain Boundaries in Ultrafine-Grained Metal Materials. Material Science Forum, 783-786 (2014) 2671-2676.
DOI: 10.4028/www.scientific.net/msf.783-786.2671
Google Scholar
[14]
V.V. Popov, A.V. Sergeev, A.V. Stolbovsky, Emission Nuclear Gamma-Resonance Spectroscopy of Grain Boundaries in Coarse-Grained and Ultrafine-Grained Polycrystalline Mo, Defect and Diffusion Forum. 364 (2015) 147-156.
DOI: 10.4028/www.scientific.net/ddf.364.147
Google Scholar
[15]
V.V. Popov, A.V. Stolbovsky, A.V. Sergeev, V.A. Semionkin, Mössbauer Spectroscopy of Grain Boundaries in Ultrafine-Grained Materials Produced by Severe Plastic Deformation, Bull. Russ. Acad. Sci. Phys. 81 (2017) 951-955.
DOI: 10.3103/s106287381707022x
Google Scholar
[16]
V.V. Popov, A.V. Sergeev, A.V. Stolbovsky, Emission Mössbauer spectroscopy of grain boundaries in ultrafine-grained W and Mo produced by severe plastic deformation, Phys. Met. Metallogr.118 (2017) 354-361.
DOI: 10.1134/s0031918x17040081
Google Scholar
[17]
T. Hebesberger, H.P. Stuwe, A. Vorhauer, F. Wetscher, R. Pippan. Structure of Cu deformed by high pressure torsion. Acta Mater., 53 (2005) 393-402.
DOI: 10.1016/j.actamat.2004.09.043
Google Scholar
[18]
K. Edalati, T. Fujioka, Z. Horita Microstructure and mechanical properties of pure Cu processed by high-pressure torsion. Mater. Sci. Eng. A 497 (2008) 168-173.
DOI: 10.1016/j.msea.2008.06.039
Google Scholar
[19]
V.V. Popov, A.V. Stolbovkiy, E.N. Popova, V.P. Pilyugin, Structure and Thermal Stability of Cu after Severe Plastic Deformation, Defect and Diffusion Forum, 297-301 (2010) 1312-1321.
DOI: 10.4028/www.scientific.net/ddf.297-301.1312
Google Scholar
[20]
A.V. Stolbovsky, V.V. Popov, E.N. Popova, V.P. Pilyugin, Structure, thermal stability, and state of grain boundaries of copper subjected to high-pressure torsion at cryogenic temperatures, Bull. Russ. Acad. Sci. Phys,. 78 (2014) 908-916.
DOI: 10.3103/s1062873814090299
Google Scholar
[21]
M.V. Degtyarev, T.I. Chashchukhina, L.M. Voronova, Grain growth in dynamically recrystallized copper during annealing above and below the temperature of thermally activated nucleation, Diagnostics, Resource and Mechanics of materials and structures. (2016) 15-29.
DOI: 10.17804/2410-9908.2016.5.015-029
Google Scholar
[22]
T. Zehetbauer, H.P. Stüwe, A. Vorhauer et al. The Role of Hydrostatic Pressure in Severe Plastic Deformation: Adv. Eng. Mater. 5 (2003) 330-337.
DOI: 10.1002/adem.200310090
Google Scholar
[23]
X. Sauvage, F. Wetscher, P. Pareige, Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu–Fe composite, Acta Mater. 53 (2005) 2127-2135.
DOI: 10.1016/j.actamat.2005.01.024
Google Scholar
[24]
A.V. Korznikov, A.N. Tyumentsev, I.A. Ditenberg, On the limiting minimum size of grains formed in metallic materials produced by high-pressure torsion, Phys. Met. Metallogr. 106 (4) (2008) 418-423.
DOI: 10.1134/s0031918x08100128
Google Scholar
[25]
R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, A. Bachmaier, Saturation of fragmentation during severe plastic deformation, Ann. Rev. Mater. Res. 40 (2010) 319-343.
DOI: 10.1146/annurev-matsci-070909-104445
Google Scholar
[26]
D.V. Shangina, J. Gubicza, E. Dodony, et al. Improvement of strength and conductivity in Cu-alloys with the application of high pressure torsion and subsequent heat-treatments, Journal of Materials Science. 49 (2014) 6674-6681.
DOI: 10.1007/s10853-014-8339-4
Google Scholar
[27]
A.V. Stolbovsky, V.V. Popov, E.N. Popova, Structure and Thermal Stability of Tin Bronze Nanostructured by High Pressure Torsion, Diagnostics, Resource and Mechanics of materials and structures. 5 (2015) 118-132.
DOI: 10.17804/2410-9908.2015.5.118-132
Google Scholar
[28]
V. V. Popov, A. V. Stolbovsky, E. N. Popova, R.M. Falahutdinov, E.V. Shorohov, Evolution of the Structure of Tin Bronze during Dynamic Channel-Angular Pressing. Physics of Metals and Metallography. 118 (2017) 864-871.
DOI: 10.1134/s0031918x17090071
Google Scholar
[29]
V.V. Popov, E.N. Popova, A.V. Stolbovsky, R.M. Falahutdinov, Evolution of the Structure of Cu–1% Sn Bronze under High Pressure Torsion and Subsequent Annealing. Physics of Metals and Metallography, 119 (2018) 358-367.
DOI: 10.1134/s0031918x18040154
Google Scholar
[30]
A.E. Kheifets, I.V. Khomskaya, L.G. Korshunov, et al. Effect of high strain-rate deformation and aging temperature on the evolution of structure, microhardness, and wear resistance of low-alloyed Cu–Cr–Zr alloy. Physics of Metals and Metallography, 119 (2018) 402-411.
DOI: 10.1134/s0031918x18040075
Google Scholar
[31]
I.V. Khomskaya, V.I. Zel'dovich, E.V. Shorokhov, et al. Effect of high-rate deformation on the structure, the properties, and the thermal stability of copper alloyed with chromium and zirconium. Russian Metallurgy (Metally), 10 (2017) 851-857.
DOI: 10.1134/s003602951710010x
Google Scholar
[32]
V.V. Popov, A.V. Stolbovsky, E.N. Popova. Structure of Nickel-Copper Alloys Subjected to High-Pressure Torsion to Saturation Stage. Phys. Met. Metallogr. 118(11) (2017), 1073-1080.
DOI: 10.1134/s0031918x17110114
Google Scholar
[33]
A.N. Tyumentsev, I.A. Ditenberg, Yu.P. Pinzhin, A.D. Korotaev, R.Z. Valiev, Microstructure and Mechanisms of its Formation in Submicrocrystalline Copper Produced by Severe Plastic Deformation. Physics of Metals and Metallography, 96(4) (2003) 378-387.
DOI: 10.1002/3527602461.ch6j
Google Scholar
[34]
V.V. Popov, A.V. Sergeev, G.P. Grabovetskaya, I.P. Mishin. Structure, thermal stability and properties of grain boundaries of submicrocrystalline Mo obtained by severe plastic deformation. Defect and Diffusion Forum. 326-328 (2012) 674-681.
DOI: 10.4028/www.scientific.net/ddf.326-328.674
Google Scholar
[35]
A.V. Stolbovsky, E. Farafontova, Statistical Analysis Method of the Grain Structure of Nanostructured Single Phase Metal Materials Processed by High-Pressure Torsion, Solid State Phenomena, 284 (2018) 425-430.
DOI: 10.4028/www.scientific.net/ssp.284.425
Google Scholar