Effect of Hf Doping of Commercially Pure Copper on Evolution of its Microstructure under High Pressure Torsion

Article Preview

Abstract:

Evolution of the structure of commercially pure copper and Cu-0.8%Hf alloy under high pressure torsion (HPT) is compared. It is demonstrated that doping with Hf affects appreciably a tendency to relaxation processes inherent to copper. Introduction of additional impurities enables to achieve finer fragmentation of structure and increase of microhardness with the strain growth, compared to the commercially pure copper, in which these parameters are weakened by the intensively developing relaxation processes. However, these processes can serve a limiting factor for fragmentation and microhardness increase in the Cu-0.8Hf alloy as well, under the HPT by 5 revolutions of anvils.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

424-429

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Gleiter, Nanostructured materials: basic concepts and microstructure, Acta Mater., 48 (2000) 1-29.

Google Scholar

[2] Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Mater, 61 (2013) 782–817.

DOI: 10.1016/j.actamat.2012.10.038

Google Scholar

[3] R.Z. Valiev, A.P. Zhilyaev, T.G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications. TMS, Wiley, Hoboken, New Jersey, USA, (2014).

Google Scholar

[4] R.Z. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nature Mater, 3 (2004) 511-516.

DOI: 10.1038/nmat1180

Google Scholar

[5] M. Kawasaki, T.G. Langdon, Principles of superplasticity in ultrafine-grained materials. J. Mater Sci., 42 (2007) 1782-1796.

DOI: 10.1007/s10853-006-0954-2

Google Scholar

[6] X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, R.Z. Valiev, Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater. Sci. Eng. A 540 (2012) 1-12.

DOI: 10.1016/j.msea.2012.01.080

Google Scholar

[7] R.Z. Valiev, R. Sh Musalimov, High-resolution transmission electron microscopy of nanocrystalline materials, Phys. Met. Metallogr., 78 (1994) 666-670.

Google Scholar

[8] Yu.R. Kolobov, G.P. Grabovetskaya, M.B. Ivanov, A.P. Zhilyaev, R.Z. Valiev, Grain boundary diffusion characteristics of nanostructured nickel. Scripta Mater, 44 (2001) 873-878.

DOI: 10.1016/s1359-6462(00)00699-0

Google Scholar

[9] V.V. Popov, V.N. Kaigorodov, E.N. Popova, A.V. Stolbovsky. Mossbauer emission spectroscopy of grain boundaries in poly- and nanocrystalline niobium. Bull. RAS: Physics, 71(9) (2007) 1244-1248.

DOI: 10.3103/s1062873807090110

Google Scholar

[10] V.V. Popov, V.N. Kaigorodov, E.N. Popova, A.V. Stolbovsky NGR Investigation of Grain-Boundary Diffusion in Poly- and Nanocrystalline Nb. Defect and Diffusion Forum. 263 (2007) 69-74.

DOI: 10.4028/www.scientific.net/ddf.263.69

Google Scholar

[11] G. Wilde, J. Ribbe, G. Reglitz, M. Wegner, H. Rösner, Y. Estrin, M. Zehetbauer, D. Setman, S. Divinski. Plasticity and grain boundary diffusion at small grain sizes. Adv. Eng. Mater. 12 (2010) 758-764.

DOI: 10.1002/adem.200900333

Google Scholar

[12] A.V. Stolbovskii, E.N. Popova, Study of the Grain Boundary Structure in Submicrocrystalline Niobium after Equal-Channel Angular Pressing, Bull. Russ. Acad. Sci. Phys. 74 (2010) 388-392.

DOI: 10.3103/s1062873810030159

Google Scholar

[13] V.V. Popov. Mössbauer Spectroscopy of Grain Boundaries in Ultrafine-Grained Metal Materials. Material Science Forum, 783-786 (2014) 2671-2676.

DOI: 10.4028/www.scientific.net/msf.783-786.2671

Google Scholar

[14] V.V. Popov, A.V. Sergeev, A.V. Stolbovsky, Emission Nuclear Gamma-Resonance Spectroscopy of Grain Boundaries in Coarse-Grained and Ultrafine-Grained Polycrystalline Mo, Defect and Diffusion Forum. 364 (2015) 147-156.

DOI: 10.4028/www.scientific.net/ddf.364.147

Google Scholar

[15] V.V. Popov, A.V. Stolbovsky, A.V. Sergeev, V.A. Semionkin, Mössbauer Spectroscopy of Grain Boundaries in Ultrafine-Grained Materials Produced by Severe Plastic Deformation, Bull. Russ. Acad. Sci. Phys. 81 (2017) 951-955.

DOI: 10.3103/s106287381707022x

Google Scholar

[16] V.V. Popov, A.V. Sergeev, A.V. Stolbovsky, Emission Mössbauer spectroscopy of grain boundaries in ultrafine-grained W and Mo produced by severe plastic deformation, Phys. Met. Metallogr.118 (2017) 354-361.

DOI: 10.1134/s0031918x17040081

Google Scholar

[17] T. Hebesberger, H.P. Stuwe, A. Vorhauer, F. Wetscher, R. Pippan. Structure of Cu deformed by high pressure torsion. Acta Mater., 53 (2005) 393-402.

DOI: 10.1016/j.actamat.2004.09.043

Google Scholar

[18] K. Edalati, T. Fujioka, Z. Horita Microstructure and mechanical properties of pure Cu processed by high-pressure torsion. Mater. Sci. Eng. A 497 (2008) 168-173.

DOI: 10.1016/j.msea.2008.06.039

Google Scholar

[19] V.V. Popov, A.V. Stolbovkiy, E.N. Popova, V.P. Pilyugin, Structure and Thermal Stability of Cu after Severe Plastic Deformation, Defect and Diffusion Forum, 297-301 (2010) 1312-1321.

DOI: 10.4028/www.scientific.net/ddf.297-301.1312

Google Scholar

[20] A.V. Stolbovsky, V.V. Popov, E.N. Popova, V.P. Pilyugin, Structure, thermal stability, and state of grain boundaries of copper subjected to high-pressure torsion at cryogenic temperatures, Bull. Russ. Acad. Sci. Phys,. 78 (2014) 908-916.

DOI: 10.3103/s1062873814090299

Google Scholar

[21] M.V. Degtyarev, T.I. Chashchukhina, L.M. Voronova, Grain growth in dynamically recrystallized copper during annealing above and below the temperature of thermally activated nucleation, Diagnostics, Resource and Mechanics of materials and structures. (2016) 15-29.

DOI: 10.17804/2410-9908.2016.5.015-029

Google Scholar

[22] T. Zehetbauer, H.P. Stüwe, A. Vorhauer et al. The Role of Hydrostatic Pressure in Severe Plastic Deformation: Adv. Eng. Mater. 5 (2003) 330-337.

DOI: 10.1002/adem.200310090

Google Scholar

[23] X. Sauvage, F. Wetscher, P. Pareige, Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu–Fe composite, Acta Mater. 53 (2005) 2127-2135.

DOI: 10.1016/j.actamat.2005.01.024

Google Scholar

[24] A.V. Korznikov, A.N. Tyumentsev, I.A. Ditenberg, On the limiting minimum size of grains formed in metallic materials produced by high-pressure torsion, Phys. Met. Metallogr. 106 (4) (2008) 418-423.

DOI: 10.1134/s0031918x08100128

Google Scholar

[25] R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, A. Bachmaier, Saturation of fragmentation during severe plastic deformation, Ann. Rev. Mater. Res. 40 (2010) 319-343.

DOI: 10.1146/annurev-matsci-070909-104445

Google Scholar

[26] D.V. Shangina, J. Gubicza, E. Dodony, et al. Improvement of strength and conductivity in Cu-alloys with the application of high pressure torsion and subsequent heat-treatments, Journal of Materials Science. 49 (2014) 6674-6681.

DOI: 10.1007/s10853-014-8339-4

Google Scholar

[27] A.V. Stolbovsky, V.V. Popov, E.N. Popova, Structure and Thermal Stability of Tin Bronze Nanostructured by High Pressure Torsion, Diagnostics, Resource and Mechanics of materials and structures. 5 (2015) 118-132.

DOI: 10.17804/2410-9908.2015.5.118-132

Google Scholar

[28] V. V. Popov, A. V. Stolbovsky, E. N. Popova, R.M. Falahutdinov, E.V. Shorohov, Evolution of the Structure of Tin Bronze during Dynamic Channel-Angular Pressing. Physics of Metals and Metallography. 118 (2017) 864-871.

DOI: 10.1134/s0031918x17090071

Google Scholar

[29] V.V. Popov, E.N. Popova, A.V. Stolbovsky, R.M. Falahutdinov, Evolution of the Structure of Cu–1% Sn Bronze under High Pressure Torsion and Subsequent Annealing. Physics of Metals and Metallography, 119 (2018) 358-367.

DOI: 10.1134/s0031918x18040154

Google Scholar

[30] A.E. Kheifets, I.V. Khomskaya, L.G. Korshunov, et al. Effect of high strain-rate deformation and aging temperature on the evolution of structure, microhardness, and wear resistance of low-alloyed Cu–Cr–Zr alloy. Physics of Metals and Metallography, 119 (2018) 402-411.

DOI: 10.1134/s0031918x18040075

Google Scholar

[31] I.V. Khomskaya, V.I. Zel'dovich, E.V. Shorokhov, et al. Effect of high-rate deformation on the structure, the properties, and the thermal stability of copper alloyed with chromium and zirconium. Russian Metallurgy (Metally), 10 (2017) 851-857.

DOI: 10.1134/s003602951710010x

Google Scholar

[32] V.V. Popov, A.V. Stolbovsky, E.N. Popova. Structure of Nickel-Copper Alloys Subjected to High-Pressure Torsion to Saturation Stage. Phys. Met. Metallogr. 118(11) (2017), 1073-1080.

DOI: 10.1134/s0031918x17110114

Google Scholar

[33] A.N. Tyumentsev, I.A. Ditenberg, Yu.P. Pinzhin, A.D. Korotaev, R.Z. Valiev, Microstructure and Mechanisms of its Formation in Submicrocrystalline Copper Produced by Severe Plastic Deformation. Physics of Metals and Metallography, 96(4) (2003) 378-387.

DOI: 10.1002/3527602461.ch6j

Google Scholar

[34] V.V. Popov, A.V. Sergeev, G.P. Grabovetskaya, I.P. Mishin. Structure, thermal stability and properties of grain boundaries of submicrocrystalline Mo obtained by severe plastic deformation. Defect and Diffusion Forum. 326-328 (2012) 674-681.

DOI: 10.4028/www.scientific.net/ddf.326-328.674

Google Scholar

[35] A.V. Stolbovsky, E. Farafontova, Statistical Analysis Method of the Grain Structure of Nanostructured Single Phase Metal Materials Processed by High-Pressure Torsion, Solid State Phenomena, 284 (2018) 425-430.

DOI: 10.4028/www.scientific.net/ssp.284.425

Google Scholar