[1]
G.W. Stachowiak and A.W. Batchelor, Engineering Tribology, Butterworth-Heinemann, (2013).
Google Scholar
[2]
A. Karimi and J. L. Martin, Cavitation erosion of materials, Int. Met. Rev. 31 (1986) 1–26.
Google Scholar
[3]
Y.K. Zhou, J.G. He, F.G. Hammitt, Cavitation erosion liners of diesel engine wet cylinder, Wear 76 (1982) 321–328.
DOI: 10.1016/0043-1648(82)90070-9
Google Scholar
[4]
S. Hattori and N. Mikami, Cavitation erosion resistance of Stellite alloy weld overlays, Wear 267 (2009) 1954–(1960).
DOI: 10.1016/j.wear.2009.05.007
Google Scholar
[5]
J.F. Santa, J.A. Blanco, J.E. Giraldo, A. Toro, Cavitation erosion of martensitic and austenitic stainless steel welded coatings, Wear 271 (2011) 1445–1453.
DOI: 10.1016/j.wear.2010.12.081
Google Scholar
[6]
M. Duraiselvam, R. Galun, V. Wesling, B. L. Mordike, R. Reiter, J. Oligmüller, Cavitation erosion resistance of AISI 420 martensitic stainless steel laser-clad with nickel aluminide intermetallic composites and matrix composites with TiC reinforcement, Surf. Coatings Technol. 201 (2006) 1289–1295.
DOI: 10.1016/j.surfcoat.2006.01.054
Google Scholar
[7]
K.Y. Chiu, F.T. Cheng, H.C. Man, Cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NiTi, Mater. Sci. Eng. A 392 (2005) 348–358.
DOI: 10.1016/j.msea.2004.09.035
Google Scholar
[8]
E.A. Brujan, T. Ikedab, Y. Matsumoto, Shock wave emission from a cloud of bubbles, Soft Matter 8 (2012) 5777–5783.
DOI: 10.1039/c2sm25379h
Google Scholar
[9]
W. Lauterborn and H. Bolle, Experimental investigation of cavitation bubble collapse in the neighborhood of a solid boundary, J. Fluid Mech. 72 (1975) 391–399.
DOI: 10.1017/s0022112075003448
Google Scholar
[10]
M.S. Plesset and R.B. Chapman, Collapse of an initially spherical Vapor Cavity in the Neighborhood of a solid Boundary, J. Fluid Mech. 47 (1971) 283–290.
DOI: 10.1017/s0022112071001058
Google Scholar
[11]
M. Dular, B. Bachert, B. Stoffel, and B. Širok, Relationship between cavitation structures and cavitation damage, Wear 257 (2004) 1176–1184.
DOI: 10.1016/j.wear.2004.08.004
Google Scholar
[12]
K. Nakata, M. Oishi, M. Koshiishi, T. Hashimoto, H. Anzai, Y. Saito, W. Kono, Re-weldability of neutron-irradiated stainless steels studied by multi-pass TIG welding, J. Nucl. Mater. 307 (2002) 1578–1583.
DOI: 10.1016/s0022-3115(02)00966-2
Google Scholar
[13]
A.J. Pinkerton, W. Wang, L. Li, Component repair using laser direct metal deposition, Proc. IMechE Part B: J. Engineering Manufacture 222 (2008) 827–836.
DOI: 10.1243/09544054jem1008
Google Scholar
[14]
A. Shah, M. Rayjada, S. Gupta, Investigating mechanical properties of SAW and SMAW welded joints & the effect of SMAW-repair of saw welded specimen, IJMPE 3 (2015) 66–70.
Google Scholar
[15]
L. Tôn-Thât, Experimental comparison of cavitation erosion rates of different steels used in hydraulic turbines, IOP Conf. Ser.: Earth Environ. Sci. 12 (2010) 1–9.
DOI: 10.1088/1755-1315/12/1/012052
Google Scholar
[16]
A. Kumar, J. Boy, R. Zatorski, L.D. Stephenson, Thermal Spray and Weld Repair Alloys for the Repair of Cavitation Damage in Turbines and Pumps: A Technical Note, J. Therm. Spray Tech. 14 (2005) 177–182.
DOI: 10.1361/10599630523737
Google Scholar
[17]
ASTM, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, G 32 - 10, (2011) 1–19.
Google Scholar
[18]
A. Selokar, U. Prakash, D.B. Goel, B.V.M. Kumar, Cavitation erosion and solid particle erosion behaviour of a nitrogen alloyed austenitic stainless steel, ISIJ International 55 (2015) 1123–1130.
DOI: 10.2355/isijinternational.55.1123
Google Scholar
[19]
W.C. Leith, Cavitation damage of metals, PhD thesis, McGill university, Montreal, (1960).
Google Scholar
[20]
A.W. Selokar, D.B. Goel, U. Prakash, A comparative study of cavitation erosive behaviour of 23/8N nitronic steel and 13/4 martensitic stainless steel, Advanced Materials Research 585 (2012) 554–558.
DOI: 10.4028/www.scientific.net/amr.585.554
Google Scholar