[1]
C.E. Brennen, Cavitation and bubble dynamics, Oxford University Press, (1995).
Google Scholar
[2]
A. Karimi and J. L. Martin, Cavitation erosion of materials, Int. Met. Rev. 31 (1986) 1-26.
Google Scholar
[3]
M. Dular, O.C. Delgosha, M. Petkovšek, Observations of cavitation erosion pit formation, Ultrasonics Sonochemistry 20 (2013) 1113–1120.
DOI: 10.1016/j.ultsonch.2013.01.011
Google Scholar
[4]
Y.K. Zhou, J.G. He, F.G. Hammitt, Cavitation erosion liners of diesel engine wet cylinder, Wear 76 (1982) 321–328.
DOI: 10.1016/0043-1648(82)90070-9
Google Scholar
[5]
J.F. Santa, L.A. Espitia, J.A. Blanco, S.A. Romo, A. Toro, Slurry and cavitation erosion resistance of thermal spray coatings, Wear 267 (2009) 160–167.
DOI: 10.1016/j.wear.2009.01.018
Google Scholar
[6]
C. F. Naudé and A.T. Ellis, On the Mechanism of Cavitation Damage by Nonhemispherical Cavities Collapsing in Contact With a Solid Boundary, Trans. ASME, J. Basic Eng 83 (1961) 648–656.
DOI: 10.1115/1.3662286
Google Scholar
[7]
M. Duraiselvam, R. Galun, V. Wesling, B.L. Mordike, R. Reiter, J. Oligmüller, Cavitation erosion resistance of AISI 420 martensitic stainless steel laser-clad with nickel aluminide intermetallic composites and matrix composites with TiC reinforcement, Surf. Coatings Technol. 201 (2006) 1289–1295.
DOI: 10.1016/j.surfcoat.2006.01.054
Google Scholar
[8]
E.A. Brujan, T. Ikedab, Y. Matsumoto, Shock wave emission from a cloud of bubbles, Soft Matter 8 (2012) 5777–5783.
DOI: 10.1039/c2sm25379h
Google Scholar
[9]
W. Lauterborn and H. Bolle, Experimental investigation of cavitation bubble collapse in the neighborhood of a solid boundary, J. Fluid Mech. 72 (1975) 391–399.
DOI: 10.1017/s0022112075003448
Google Scholar
[10]
M.S. Plesset and R.B. Chapman, Collapse of an initially spherical Vapor Cavity in the Neighborhood of a solid Boundary, J. Fluid Mech. 47 (1971) 283–290.
DOI: 10.1017/s0022112071001058
Google Scholar
[11]
M. Dular, B. Bachert, B. Stoffel, and B. Širok, Relationship between cavitation structures and cavitation damage, Wear 257 (2004) 1176–1184.
DOI: 10.1016/j.wear.2004.08.004
Google Scholar
[12]
R. Rachidi, B.El Kihel, F. Delaunois, V. Vitry, D. Deschuyteneer, Wear Performance of Thermally Sprayed NiCrBSi and NiCrBSi-WC Coatings Under Two Different Wear Modes, J. Mater. Environ. Sci. 8, 12 (2017) 4550-4559.
DOI: 10.26872/jmes.2017.8.12.480
Google Scholar
[13]
Q. Wang, S. Zhang, Y. Cheng, J. Xiang, X. Zhao, and G. Yang, Wear and corrosion performance of WC-10Co4Cr coatings deposited by different HVOF and HVAF spraying processes, Surf. Coatings Technol. 218 (2013) 127–136.
DOI: 10.1016/j.surfcoat.2012.12.041
Google Scholar
[14]
A. Milanti, V. Matikainen, H. Koivuluoto, G. Bolelli, L. Lusvarghi, P. Vuoristo, Effect of spraying parameters on the microstructural and corrosion properties of HVAF-sprayed Fe-Cr-Ni-B-C coatings, Surf. Coatings Technol. 277 (2015) 81–90.
DOI: 10.1016/j.surfcoat.2015.07.018
Google Scholar
[15]
R.Q. Guo, C. Zhang, Q. Chen, Y. Yang, N. Li, L. Liu, Study of structure and corrosion resistance of Fe-based amorphous coatings prepared by HVAF and HVOF, Corros. Sci. 53 (2011) 2351–2356.
DOI: 10.1016/j.corsci.2010.12.022
Google Scholar
[16]
L. Jacobs, M.M. Hyland, M. De Bonte, Comparative Study of WC-Cermet Coatings Sprayed via the HVOF and the HVAF Process, J. Therm. Spray Technol. 7 (1998) 213–218.
DOI: 10.1361/105996398770350954
Google Scholar
[17]
R.K. Kumar, M. Kamaraj, S. Seetharamu, T. Pramod, P. Sampathkumaran, Effect of Spray Particle Velocity on Cavitation Erosion Resistance Characteristics of HVOF and HVAF Processed 86WC-10Co4Cr Hydro Turbine Coatings, J. Therm. Spray Technol. 25 (2016) 1217–1230.
DOI: 10.1007/s11666-016-0427-3
Google Scholar
[18]
Yu.S. Korobov, Comparative analysis of supersonic gas-flame methods of coating application, Metallurgist 50 (2006) 158–162.
DOI: 10.1007/s11015-006-0057-y
Google Scholar
[19]
G. Bolelli, L.-M. Berger, T. Börner, H. Koivuluoto, L. Lusvarghi, C. Lyphout, N. Markocsand, V. Matikainen, P. Nylénd, P. Sassatelli, R. Trache, P. Vuoristo, Tribology of HVOF- and HVAF-sprayed WC–10Co4Cr hardmetal coatings: A comparative assessment, Surf. Coatings Technol. 265 (2015) 125–144.
DOI: 10.1016/j.surfcoat.2015.01.048
Google Scholar
[20]
E. Sadeghimeresht, N. Markocsan, P. Nylén, A Comparative Study of Corrosion Resistance for HVAF-Sprayed Fe- and Co-Based Coatings, Coatings 6 (2016) 1-15.
DOI: 10.3390/coatings6020016
Google Scholar
[21]
Sh. Liu, D. Sun, Z. Fan, H.-Y Yu, H.-M. Meng, The influence of HVAF powder feedstock characteristics on the sliding wear behaviour of WC–NiCr coatings, Surf. Coatings Technol. 202 (2008) 4893–4900.
DOI: 10.1016/j.surfcoat.2008.03.014
Google Scholar
[22]
G. Bolelli, L.-M. Berger, T. Börner, H. Koivuluoto, V. Matikainen, L. Lusvarghi, C. Lyphout, N. Markocsan, P. Nylénd, P. Sassatelli, R. Trache, P. Vuoristo, Sliding and abrasive wear behaviour of HVOF- and HVAF-sprayed Cr3C2–NiCr hardmetal coatings, Wear, 358-359 (2016) 32–50.
DOI: 10.1016/j.wear.2016.03.034
Google Scholar
[23]
L.-M. Berger, Binary WC– and Cr3C2–containing hardmetal compositions for thermally sprayed coatings, IOP Conf. Series: Materials Science and Engineering, 118 (2016) 1-8.
DOI: 10.1088/1757-899x/118/1/012010
Google Scholar
[24]
C. Lyphout, K. Satob, Screening design of hard metal feedstock powders for supersonic air fuel processing, Surf. Coatings Technol. 258 (2014) 447–457.
DOI: 10.1016/j.surfcoat.2014.08.055
Google Scholar
[25]
Q. Wang, Z. Tang, L. Cha, Cavitation and Sand Slurry Erosion Resistances of WC-10Co-4Cr Coatings, J. Mater. Eng. Perform. 24 (2015) 2435–2443.
DOI: 10.1007/s11665-015-1496-z
Google Scholar
[26]
A.P. Wang, Z.M. Wang, J. Zhang, J.Q. Wang, Deposition of HVAF-sprayed Ni-based amorphous metallic coatings, Journal of Alloys and Compounds 440 (2007) 225–228.
DOI: 10.1016/j.jallcom.2006.09.003
Google Scholar
[27]
E. Sadeghimeresht, N.Markocsan, P. Nylén, Microstructural and electrochemical characterization of Ni-based bi-layer coatings produced by the HVAF process, Surf. Coatings Technol. 304 (2016) 606–619.
DOI: 10.1016/j.surfcoat.2016.07.080
Google Scholar
[28]
E. Sadeghimeresht, N. Markocsan, P. Nyle´n, A Comparative Study on Ni-Based Coatings Prepared by HVAF, HVOF, and APS Methods for Corrosion Protection Applications, J. Therm. Spray Technol. 25 (2016) 1604-1616.
DOI: 10.1007/s11666-016-0474-9
Google Scholar
[29]
Z. Li, J. Han, J. Lu, J. Chen, Cavitation erosion behavior of Hastelloy C-276 nickel-based alloy, Journal of Alloys and Compounds 619 (2015) 754–759.
DOI: 10.1016/j.jallcom.2014.08.248
Google Scholar
[30]
K. Sang and Y. Li, Cavitation erosion of flame spray weld coating of nickel-base alloy powder, Wear 189 (1995) 20-24.
DOI: 10.1016/0043-1648(95)06608-x
Google Scholar
[31]
Q. Ming, L.C. Lim, Z.D. Chenc, Laser cladding of nickel-based hardfacing alloys, Surf. Coatings Technol. 106 (1998) 174–182.
DOI: 10.1016/s0257-8972(98)00524-6
Google Scholar
[32]
B. Vyas and I.L.H. Hansson, The cavitation erosion-corrosion of stainless Corros. Sci. 30 (1990) 761–770.
DOI: 10.1016/0010-938x(90)90001-l
Google Scholar
[33]
Y. Zheng, S. Luo, W. Ke, Effect of passivity on electrochemical corrosion behavior of alloys during cavitation in aqueous solutions, Wear 262 (2007) 1308–1314.
DOI: 10.1016/j.wear.2007.01.006
Google Scholar
[34]
ASTM, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, G 32 - 10, (2011) 1–19.
Google Scholar
[35]
M. Duraiselvam, R. Galun, V. Wesling, B.L. Mordike, R. Reiter, J. Oligmüller, Cavitation erosion resistance of AISI 420 martensitic stainless steel laser-clad with nickel aluminide intermetallic composites and matrix composites with TiC reinforcement, Surf. Coatings Technol. 201 (2006) 1289–1295.
DOI: 10.1016/j.surfcoat.2006.01.054
Google Scholar
[36]
N. Espallargas, J. Berget, J.M. Guilemany, A.V. Benedetti, P.H. Suegama, Cr3C2-NiCr and WC-Ni thermal spray coatings as alternatives to hard chromium for erosion-corrosion resistance Surf. Coatings Technol. 202 (2008) 1405–1417.
DOI: 10.1016/j.surfcoat.2007.06.048
Google Scholar