Study of Cavitation Erosion-Corrosion Resistance of Thermally Sprayed Ni-Based Coatings Prepared by HVAF Process

Article Preview

Abstract:

In this study, two Ni-based coating materials, namely NiCrMoNb and NiCrBSi, have been applied using High Velocity Air Fuel (HVAF) thermal spraying process. The performance of the coated surface in resistance to cavitation erosion-corrosion of both coating materials, has been evaluated using an ultrasonic vibratory method. The cumulative material loss and erosion rate curves of the two coatings have been discussed. Surface topography, microhardness, macroscopic images, and scanning electron microscope (SEM) micrographs were used to characterize the coatings before and after the cavitation test. The cavitation results showed that the NiCrMoNb coating surface has exhibited better performance than the NiCrBSi coating surface under the same test conditions. The total cumulative weight loss of the NiCrMoNb coating was about 1/3 that of the NiCrBSi coating. SEM micrographs of the eroded surfaces showed that the surface layer of the NiCrBSi coating was more damaged, compared to layer of the NiCrMoNb coating. Overall, the NiCrMoNb coating can be effectively used against the cavitation wear, due to its superior performance.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

893-901

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.E. Brennen, Cavitation and bubble dynamics, Oxford University Press, (1995).

Google Scholar

[2] A. Karimi and J. L. Martin, Cavitation erosion of materials, Int. Met. Rev. 31 (1986) 1-26.

Google Scholar

[3] M. Dular, O.C. Delgosha, M. Petkovšek, Observations of cavitation erosion pit formation, Ultrasonics Sonochemistry 20 (2013) 1113–1120.

DOI: 10.1016/j.ultsonch.2013.01.011

Google Scholar

[4] Y.K. Zhou, J.G. He, F.G. Hammitt, Cavitation erosion liners of diesel engine wet cylinder, Wear 76 (1982) 321–328.

DOI: 10.1016/0043-1648(82)90070-9

Google Scholar

[5] J.F. Santa, L.A. Espitia, J.A. Blanco, S.A. Romo, A. Toro, Slurry and cavitation erosion resistance of thermal spray coatings, Wear 267 (2009) 160–167.

DOI: 10.1016/j.wear.2009.01.018

Google Scholar

[6] C. F. Naudé and A.T. Ellis, On the Mechanism of Cavitation Damage by Nonhemispherical Cavities Collapsing in Contact With a Solid Boundary, Trans. ASME, J. Basic Eng 83 (1961) 648–656.

DOI: 10.1115/1.3662286

Google Scholar

[7] M. Duraiselvam, R. Galun, V. Wesling, B.L. Mordike, R. Reiter, J. Oligmüller, Cavitation erosion resistance of AISI 420 martensitic stainless steel laser-clad with nickel aluminide intermetallic composites and matrix composites with TiC reinforcement, Surf. Coatings Technol. 201 (2006) 1289–1295.

DOI: 10.1016/j.surfcoat.2006.01.054

Google Scholar

[8] E.A. Brujan, T. Ikedab, Y. Matsumoto, Shock wave emission from a cloud of bubbles, Soft Matter 8 (2012) 5777–5783.

DOI: 10.1039/c2sm25379h

Google Scholar

[9] W. Lauterborn and H. Bolle, Experimental investigation of cavitation bubble collapse in the neighborhood of a solid boundary, J. Fluid Mech. 72 (1975) 391–399.

DOI: 10.1017/s0022112075003448

Google Scholar

[10] M.S. Plesset and R.B. Chapman, Collapse of an initially spherical Vapor Cavity in the Neighborhood of a solid Boundary, J. Fluid Mech. 47 (1971) 283–290.

DOI: 10.1017/s0022112071001058

Google Scholar

[11] M. Dular, B. Bachert, B. Stoffel, and B. Širok, Relationship between cavitation structures and cavitation damage, Wear 257 (2004) 1176–1184.

DOI: 10.1016/j.wear.2004.08.004

Google Scholar

[12] R. Rachidi, B.El Kihel, F. Delaunois, V. Vitry, D. Deschuyteneer, Wear Performance of Thermally Sprayed NiCrBSi and NiCrBSi-WC Coatings Under Two Different Wear Modes, J. Mater. Environ. Sci. 8, 12 (2017) 4550-4559.

DOI: 10.26872/jmes.2017.8.12.480

Google Scholar

[13] Q. Wang, S. Zhang, Y. Cheng, J. Xiang, X. Zhao, and G. Yang, Wear and corrosion performance of WC-10Co4Cr coatings deposited by different HVOF and HVAF spraying processes, Surf. Coatings Technol. 218 (2013) 127–136.

DOI: 10.1016/j.surfcoat.2012.12.041

Google Scholar

[14] A. Milanti, V. Matikainen, H. Koivuluoto, G. Bolelli, L. Lusvarghi, P. Vuoristo, Effect of spraying parameters on the microstructural and corrosion properties of HVAF-sprayed Fe-Cr-Ni-B-C coatings, Surf. Coatings Technol. 277 (2015) 81–90.

DOI: 10.1016/j.surfcoat.2015.07.018

Google Scholar

[15] R.Q. Guo, C. Zhang, Q. Chen, Y. Yang, N. Li, L. Liu, Study of structure and corrosion resistance of Fe-based amorphous coatings prepared by HVAF and HVOF, Corros. Sci. 53 (2011) 2351–2356.

DOI: 10.1016/j.corsci.2010.12.022

Google Scholar

[16] L. Jacobs, M.M. Hyland, M. De Bonte, Comparative Study of WC-Cermet Coatings Sprayed via the HVOF and the HVAF Process, J. Therm. Spray Technol. 7 (1998) 213–218.

DOI: 10.1361/105996398770350954

Google Scholar

[17] R.K. Kumar, M. Kamaraj, S. Seetharamu, T. Pramod, P. Sampathkumaran, Effect of Spray Particle Velocity on Cavitation Erosion Resistance Characteristics of HVOF and HVAF Processed 86WC-10Co4Cr Hydro Turbine Coatings, J. Therm. Spray Technol. 25 (2016) 1217–1230.

DOI: 10.1007/s11666-016-0427-3

Google Scholar

[18] Yu.S. Korobov, Comparative analysis of supersonic gas-flame methods of coating application, Metallurgist 50 (2006) 158–162.

DOI: 10.1007/s11015-006-0057-y

Google Scholar

[19] G. Bolelli, L.-M. Berger, T. Börner, H. Koivuluoto, L. Lusvarghi, C. Lyphout, N. Markocsand, V. Matikainen, P. Nylénd, P. Sassatelli, R. Trache, P. Vuoristo, Tribology of HVOF- and HVAF-sprayed WC–10Co4Cr hardmetal coatings: A comparative assessment, Surf. Coatings Technol. 265 (2015) 125–144.

DOI: 10.1016/j.surfcoat.2015.01.048

Google Scholar

[20] E. Sadeghimeresht, N. Markocsan, P. Nylén, A Comparative Study of Corrosion Resistance for HVAF-Sprayed Fe- and Co-Based Coatings, Coatings 6 (2016) 1-15.

DOI: 10.3390/coatings6020016

Google Scholar

[21] Sh. Liu, D. Sun, Z. Fan, H.-Y Yu, H.-M. Meng, The influence of HVAF powder feedstock characteristics on the sliding wear behaviour of WC–NiCr coatings, Surf. Coatings Technol. 202 (2008) 4893–4900.

DOI: 10.1016/j.surfcoat.2008.03.014

Google Scholar

[22] G. Bolelli, L.-M. Berger, T. Börner, H. Koivuluoto, V. Matikainen, L. Lusvarghi, C. Lyphout, N. Markocsan, P. Nylénd, P. Sassatelli, R. Trache, P. Vuoristo, Sliding and abrasive wear behaviour of HVOF- and HVAF-sprayed Cr3C2–NiCr hardmetal coatings, Wear, 358-359 (2016) 32–50.

DOI: 10.1016/j.wear.2016.03.034

Google Scholar

[23] L.-M. Berger, Binary WC– and Cr3C2–containing hardmetal compositions for thermally sprayed coatings, IOP Conf. Series: Materials Science and Engineering, 118 (2016) 1-8.

DOI: 10.1088/1757-899x/118/1/012010

Google Scholar

[24] C. Lyphout, K. Satob, Screening design of hard metal feedstock powders for supersonic air fuel processing, Surf. Coatings Technol. 258 (2014) 447–457.

DOI: 10.1016/j.surfcoat.2014.08.055

Google Scholar

[25] Q. Wang, Z. Tang, L. Cha, Cavitation and Sand Slurry Erosion Resistances of WC-10Co-4Cr Coatings, J. Mater. Eng. Perform. 24 (2015) 2435–2443.

DOI: 10.1007/s11665-015-1496-z

Google Scholar

[26] A.P. Wang, Z.M. Wang, J. Zhang, J.Q. Wang, Deposition of HVAF-sprayed Ni-based amorphous metallic coatings, Journal of Alloys and Compounds 440 (2007) 225–228.

DOI: 10.1016/j.jallcom.2006.09.003

Google Scholar

[27] E. Sadeghimeresht, N.Markocsan, P. Nylén, Microstructural and electrochemical characterization of Ni-based bi-layer coatings produced by the HVAF process, Surf. Coatings Technol. 304 (2016) 606–619.

DOI: 10.1016/j.surfcoat.2016.07.080

Google Scholar

[28] E. Sadeghimeresht, N. Markocsan, P. Nyle´n, A Comparative Study on Ni-Based Coatings Prepared by HVAF, HVOF, and APS Methods for Corrosion Protection Applications, J. Therm. Spray Technol. 25 (2016) 1604-1616.

DOI: 10.1007/s11666-016-0474-9

Google Scholar

[29] Z. Li, J. Han, J. Lu, J. Chen, Cavitation erosion behavior of Hastelloy C-276 nickel-based alloy, Journal of Alloys and Compounds 619 (2015) 754–759.

DOI: 10.1016/j.jallcom.2014.08.248

Google Scholar

[30] K. Sang and Y. Li, Cavitation erosion of flame spray weld coating of nickel-base alloy powder, Wear 189 (1995) 20-24.

DOI: 10.1016/0043-1648(95)06608-x

Google Scholar

[31] Q. Ming, L.C. Lim, Z.D. Chenc, Laser cladding of nickel-based hardfacing alloys, Surf. Coatings Technol. 106 (1998) 174–182.

DOI: 10.1016/s0257-8972(98)00524-6

Google Scholar

[32] B. Vyas and I.L.H. Hansson, The cavitation erosion-corrosion of stainless Corros. Sci. 30 (1990) 761–770.

DOI: 10.1016/0010-938x(90)90001-l

Google Scholar

[33] Y. Zheng, S. Luo, W. Ke, Effect of passivity on electrochemical corrosion behavior of alloys during cavitation in aqueous solutions, Wear 262 (2007) 1308–1314.

DOI: 10.1016/j.wear.2007.01.006

Google Scholar

[34] ASTM, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, G 32 - 10, (2011) 1–19.

Google Scholar

[35] M. Duraiselvam, R. Galun, V. Wesling, B.L. Mordike, R. Reiter, J. Oligmüller, Cavitation erosion resistance of AISI 420 martensitic stainless steel laser-clad with nickel aluminide intermetallic composites and matrix composites with TiC reinforcement, Surf. Coatings Technol. 201 (2006) 1289–1295.

DOI: 10.1016/j.surfcoat.2006.01.054

Google Scholar

[36] N. Espallargas, J. Berget, J.M. Guilemany, A.V. Benedetti, P.H. Suegama, Cr3C2-NiCr and WC-Ni thermal spray coatings as alternatives to hard chromium for erosion-corrosion resistance Surf. Coatings Technol. 202 (2008) 1405–1417.

DOI: 10.1016/j.surfcoat.2007.06.048

Google Scholar