[1]
I.G. Brodova, O.A. Chikova, M.A. Vityunin, I.G. Shirinkina, T.I. Yablonskikh, L.V. Elokhina, Structure of diffusion layers that are formed upon spreading of Al-Si melts over the surface of St3 steel, Phys. of Met. Metallog. 109 6 (2010) 626-631.
DOI: 10.1134/s0031918x10060098
Google Scholar
[2]
P. Protsenko, A. Terlain, V. Traskine, N. Eustathopoulos, The role of intermetallics in wetting in metallic systems, Scripta Mater. 45 12 (2001) 1439-1445.
DOI: 10.1016/s1359-6462(01)01181-2
Google Scholar
[3]
O.A. Chikova, V.S. Tsepelev, M.A. Vityunin, V.V. V'yukhin, S.V. Lepikhin, Structure of the diffusion layers that form in spreading of the Cu-10 wt % Sn melt over St.3 steel, Russ. Metall. (Metally). 2013 1 (2013) 38-42.
DOI: 10.1134/s0036029513010035
Google Scholar
[4]
P. Protsenko, A. Terlain, M. Jeymond, N. Eustathopoulos Wetting of Fe-7.8 wt.% Cr stainless steel by molten Pb and Pb-17Li, Proceedings of the 10 International conference on fusion reactor materials. Baden-Baden, Germany (2001) 177-182.
DOI: 10.1016/s0022-3115(02)00988-1
Google Scholar
[5]
O.A. Chikova, V. S. Tsepelev, V. V. V'yukhin, K. Yu. Shmakova, Planning Technology for Preparing High-Entropy Alloys (Solders) of the Cu-Ga-Pb-Sn-Bi System, Metallurgist, 59 5-6 (2015) 435-440.
DOI: 10.1007/s11015-015-0123-4
Google Scholar
[6]
I.G. Brodova, O.A. Chikova, I.G. Shirinkina, Y T. I.ablonskikh, V.V. Astaf'ev, Structure of diffusion layers formed at liquid aluminum alloy-steel contact boundary, Phys. Metal. Metallog. 114 5 (2013) 406-410.
DOI: 10.1134/s0031918x13050025
Google Scholar
[7]
H.-H. Yang, W.-T. Tsai, J.-C.Kuo, C.-C.Yang, Solid/liquid interaction between a multicomponent FeCrNiCoMnAl high entropy alloy and molten aluminum, J. Alloys Compd. 509 32 (2011) 8176-8182.
DOI: 10.1016/j.jallcom.2011.05.104
Google Scholar
[8]
X. Zhang, X. Li, W. Chen, Interfacial reactions of duplex stainless steels with molten aluminum, Surf. Interface Anal. 47 6 (2015) 648-656.
DOI: 10.1002/sia.5760
Google Scholar
[9]
D. A. Kambolov, A. Z. Kashezhev, R. A. Kutuev et al., Polytherms of density and surface tension of bismuth lead and of angle of wetting of high-nickel and ferritic-martensitic steels by the Pb-Bi alloy, High Temp. 52 3 (2014) 381-384.
DOI: 10.1134/s0018151x14030146
Google Scholar
[10]
Q. Lin, P. Jin, R.Cao, J. Chen, Reactive wetting of low carbon steel by Al 4043 and 6061 alloys at 600-750 °C , Surf. Coat. Technol. 302 (2016) 166-172.
DOI: 10.1016/j.surfcoat.2016.06.005
Google Scholar
[11]
F. Silze, G. Wiehl, I. Kaban, H. Wendrock, T. Gemming, U.Kühn, J. Eckert, S.Pauly, Wetting behaviour of Cu-Ga alloys on 304L steel, Mater. Des. 91 5 (2016) 11-18.
DOI: 10.1016/j.matdes.2015.11.034
Google Scholar
[12]
S.I. Popel, Surface Phenomena in Melts, Metallurgy, Moscow, (1994).
Google Scholar
[13]
De Gennes, P.G. Wetting, Statics and dynamics, Rev. Mod. Phys. 57 3 (1985) 827-863.
DOI: 10.1103/revmodphys.57.827
Google Scholar
[14]
B.D. Summ, Y.V. Goryunov, Physicochemical Basis of Wetting and Spreading, Chemistry, Moscow, (1976).
Google Scholar
[15]
D. Bonn, J. Eggers, J. Indekeu, J. Meunier, Wetting and spreading, Rev. Mod. Phys. 81 2 (2009) 739-805.
DOI: 10.1103/revmodphys.81.739
Google Scholar
[16]
P.K. Korotkov, T.A. Orkvasov, V.A. Sozaev, Contact melting of metallic micro- and nanostructures, Bull. Russ. Acad. Sci: Phys. 70 4 (2006) 668-671.
Google Scholar
[17]
O.V. Gudieva, D.A. Kambolov, P.K. Korotkov ,V.A. Sozaev, Contact melting temperature of small-dimensional phases, Bull. Russ. Acad. Sci: Phys, 79 6 (2015)784-785.
DOI: 10.3103/s106287381506012x
Google Scholar
[18]
G. Kumar, K.N. Prabhu, Review of non-reactive and reactive wetting of liquids on surfaces, Adv. Colloid Interface Sci. 133 2 (2007) 61-89.
DOI: 10.1016/j.cis.2007.04.009
Google Scholar
[19]
D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater, 122 (2017) 448-511.
DOI: 10.1016/j.actamat.2016.08.081
Google Scholar
[20]
T.R. Paul, I.V. Belov, G.E. Murch, Analysis of diffusion in high entropy alloys, Mater. Chem. Phys. 210 (2018) 301-308.
Google Scholar
[21]
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mat. Sci. 61 (2014) 1-93.
DOI: 10.1016/j.pmatsci.2013.10.001
Google Scholar
[22]
Y. Rotenberg, L. Boruvka, A.W. Neumann, Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces, J. Colloid Interface Sci., 93 1 (1983) 169-183.
DOI: 10.1016/0021-9797(83)90396-x
Google Scholar
[23]
V.K. Kumikov, Kh.B. Khokonov, On the measurement of surface free energy and surface tension of solid metals, J. Appl. Phys. 54 3 (1983) 1346-1350.
DOI: 10.1063/1.332209
Google Scholar
[24]
M.V. Gedgagova, Kh.M. Guketlov, V.K. Kumykov et al., High-temperature measurements of surface tension of metals in vacuum, Bull. Russ. Acad. Sci: Phys. 71 5 (2007) 608-610.
DOI: 10.3103/s1062873807050036
Google Scholar
[25]
L.B. Direktor, V.M. Zaichenko, I.L. Maikov, An improved method of sessile drop for determining the surface tension of liquids, High Temp. 48 2 (2010) 176-180.
DOI: 10.1134/s0018151x10020069
Google Scholar
[26]
E. Ricci, E.Arato, A.Passerone, P. Costa, Oxygen tension activity on liquid-metal drops, Adv. Colloid Interface Sci., 117 1-3 (2005) 15-32.
DOI: 10.1016/j.cis.2005.05.007
Google Scholar
[27]
E. Ricci, D. Giuranno, I. Grosso, T. Lanata, S. Amore, R. Novakovic, E. Arato, Surface tension of molten Cu-Sn alloys under different oxygen containing atmospheres, J. Chem. Eng. Data, 54 6 (2009) 1660-1665.
DOI: 10.1021/je800717a
Google Scholar
[28]
I. Egry, E. Ricci, R. Novakovic, S. Ozawa, Surface tension of liquid metals and alloys-Recent developments, Adv. Colloid Interface Sci., 159 2 (2010) 198-212.
DOI: 10.1016/j.cis.2010.06.009
Google Scholar
[29]
F. Silze, G.Wiehl, I. Kaban, U. Kühn, J. Eckert, S. Pauly, Effect of Ga on the Wettability of CuGa10 on 304L Steel, Metall. Mater. Trans. B. 46 4 (2015) 1647-1653.
DOI: 10.1007/s11663-015-0331-0
Google Scholar