Wetting of Low Carbon Steel by High-Entropy Melts CuSnBiPbGa, CuSnBiPbIn and CuSnBiInCd and Formed Structure of Diffusion Layers

Article Preview

Abstract:

We present a result of a study of reactive wetting of surface of low carbon steel by liquid alloys CuSnBiPbGa, CuSnBiPbIn and CuSnBiInCd of equiatomic composition. Dependences of contact angle and spot diameter of wetted surface on temperature and time were studied. Liquid alloy CuSnBiPbGa begins wetting of surface of steel at 900 °C; spreading rate at higher temperatures increased by 8 times. Liquid alloy CuSnBiPbIn begins wetting surface of steel at 780°C, but spreading speed is almost unchanged with the further increase in temperature. Liquid alloy CuSnBiInCd begins wetting of surface of steel at a temperature of 570°C, and spreading is in a flash in nature. We studied microstructure and chemical composition of diffusion layers, formed at the spreading of liquid alloys of equiatomic composition CuSnBiPbGa, CuSnBiPbIn and CuSnBiInCd on steel surface. In all experiments at boundary with substrate a ductile transition layer of a solid solution of iron-based is formed. The thickness of diffusion layer side depends on the alloy composition. The widest diffusion layers formed for alloy CuSnBiInCd, and the most narrow - for alloy CuSnBiPbGa. We detected in segregations of copper and gallium atoms for bimetallic sample "CuSnBiPbGa+steel", of copper and tin atoms for samples "CuSnBiPbIn+steel" and "CuSnBiInCd+steel" in diffusion layers. The results of these studies have significance for the design of soldering technology and application of protective coatings on steel products.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

887-892

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.G. Brodova, O.A. Chikova, M.A. Vityunin, I.G. Shirinkina, T.I. Yablonskikh, L.V. Elokhina, Structure of diffusion layers that are formed upon spreading of Al-Si melts over the surface of St3 steel, Phys. of Met. Metallog. 109 6 (2010) 626-631.

DOI: 10.1134/s0031918x10060098

Google Scholar

[2] P. Protsenko, A. Terlain, V. Traskine, N. Eustathopoulos, The role of intermetallics in wetting in metallic systems, Scripta Mater. 45 12 (2001) 1439-1445.

DOI: 10.1016/s1359-6462(01)01181-2

Google Scholar

[3] O.A. Chikova, V.S. Tsepelev, M.A. Vityunin, V.V. V'yukhin, S.V. Lepikhin, Structure of the diffusion layers that form in spreading of the Cu-10 wt % Sn melt over St.3 steel, Russ. Metall. (Metally). 2013 1 (2013) 38-42.

DOI: 10.1134/s0036029513010035

Google Scholar

[4] P. Protsenko, A. Terlain, M. Jeymond, N. Eustathopoulos Wetting of Fe-7.8 wt.% Cr stainless steel by molten Pb and Pb-17Li, Proceedings of the 10 International conference on fusion reactor materials. Baden-Baden, Germany (2001) 177-182.

DOI: 10.1016/s0022-3115(02)00988-1

Google Scholar

[5] O.A. Chikova, V. S. Tsepelev, V. V. V'yukhin, K. Yu. Shmakova, Planning Technology for Preparing High-Entropy Alloys (Solders) of the Cu-Ga-Pb-Sn-Bi System, Metallurgist, 59 5-6 (2015) 435-440.

DOI: 10.1007/s11015-015-0123-4

Google Scholar

[6] I.G. Brodova, O.A. Chikova, I.G. Shirinkina, Y T. I.ablonskikh, V.V. Astaf'ev, Structure of diffusion layers formed at liquid aluminum alloy-steel contact boundary, Phys. Metal. Metallog. 114 5 (2013) 406-410.

DOI: 10.1134/s0031918x13050025

Google Scholar

[7] H.-H. Yang, W.-T. Tsai, J.-C.Kuo, C.-C.Yang, Solid/liquid interaction between a multicomponent FeCrNiCoMnAl high entropy alloy and molten aluminum, J. Alloys Compd. 509 32 (2011) 8176-8182.

DOI: 10.1016/j.jallcom.2011.05.104

Google Scholar

[8] X. Zhang, X. Li, W. Chen, Interfacial reactions of duplex stainless steels with molten aluminum, Surf. Interface Anal. 47 6 (2015) 648-656.

DOI: 10.1002/sia.5760

Google Scholar

[9] D. A. Kambolov, A. Z. Kashezhev, R. A. Kutuev et al., Polytherms of density and surface tension of bismuth lead and of angle of wetting of high-nickel and ferritic-martensitic steels by the Pb-Bi alloy, High Temp. 52 3 (2014) 381-384.

DOI: 10.1134/s0018151x14030146

Google Scholar

[10] Q. Lin, P. Jin, R.Cao, J. Chen, Reactive wetting of low carbon steel by Al 4043 and 6061 alloys at 600-750 °C , Surf. Coat. Technol. 302 (2016) 166-172.

DOI: 10.1016/j.surfcoat.2016.06.005

Google Scholar

[11] F. Silze, G. Wiehl, I. Kaban, H. Wendrock, T. Gemming, U.Kühn, J. Eckert, S.Pauly, Wetting behaviour of Cu-Ga alloys on 304L steel, Mater. Des. 91 5 (2016) 11-18.

DOI: 10.1016/j.matdes.2015.11.034

Google Scholar

[12] S.I. Popel, Surface Phenomena in Melts, Metallurgy, Moscow, (1994).

Google Scholar

[13] De Gennes, P.G. Wetting, Statics and dynamics, Rev. Mod. Phys. 57 3 (1985) 827-863.

DOI: 10.1103/revmodphys.57.827

Google Scholar

[14] B.D. Summ, Y.V. Goryunov, Physicochemical Basis of Wetting and Spreading, Chemistry, Moscow, (1976).

Google Scholar

[15] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, Wetting and spreading, Rev. Mod. Phys. 81 2 (2009) 739-805.

DOI: 10.1103/revmodphys.81.739

Google Scholar

[16] P.K. Korotkov, T.A. Orkvasov, V.A. Sozaev, Contact melting of metallic micro- and nanostructures, Bull. Russ. Acad. Sci: Phys. 70 4 (2006) 668-671.

Google Scholar

[17] O.V. Gudieva, D.A. Kambolov, P.K. Korotkov ,V.A. Sozaev, Contact melting temperature of small-dimensional phases, Bull. Russ. Acad. Sci: Phys, 79 6 (2015)784-785.

DOI: 10.3103/s106287381506012x

Google Scholar

[18] G. Kumar, K.N. Prabhu, Review of non-reactive and reactive wetting of liquids on surfaces, Adv. Colloid Interface Sci. 133 2 (2007) 61-89.

DOI: 10.1016/j.cis.2007.04.009

Google Scholar

[19] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater, 122 (2017) 448-511.

DOI: 10.1016/j.actamat.2016.08.081

Google Scholar

[20] T.R. Paul, I.V. Belov, G.E. Murch, Analysis of diffusion in high entropy alloys, Mater. Chem. Phys. 210 (2018) 301-308.

Google Scholar

[21] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mat. Sci. 61 (2014) 1-93.

DOI: 10.1016/j.pmatsci.2013.10.001

Google Scholar

[22] Y. Rotenberg, L. Boruvka, A.W. Neumann, Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces, J. Colloid Interface Sci., 93 1 (1983) 169-183.

DOI: 10.1016/0021-9797(83)90396-x

Google Scholar

[23] V.K. Kumikov, Kh.B. Khokonov, On the measurement of surface free energy and surface tension of solid metals, J. Appl. Phys. 54 3 (1983) 1346-1350.

DOI: 10.1063/1.332209

Google Scholar

[24] M.V. Gedgagova, Kh.M. Guketlov, V.K. Kumykov et al., High-temperature measurements of surface tension of metals in vacuum, Bull. Russ. Acad. Sci: Phys. 71 5 (2007) 608-610.

DOI: 10.3103/s1062873807050036

Google Scholar

[25] L.B. Direktor, V.M. Zaichenko, I.L. Maikov, An improved method of sessile drop for determining the surface tension of liquids, High Temp. 48 2 (2010) 176-180.

DOI: 10.1134/s0018151x10020069

Google Scholar

[26] E. Ricci, E.Arato, A.Passerone, P. Costa, Oxygen tension activity on liquid-metal drops, Adv. Colloid Interface Sci., 117 1-3 (2005) 15-32.

DOI: 10.1016/j.cis.2005.05.007

Google Scholar

[27] E. Ricci, D. Giuranno, I. Grosso, T. Lanata, S. Amore, R. Novakovic, E. Arato, Surface tension of molten Cu-Sn alloys under different oxygen containing atmospheres, J. Chem. Eng. Data, 54 6 (2009) 1660-1665.

DOI: 10.1021/je800717a

Google Scholar

[28] I. Egry, E. Ricci, R. Novakovic, S. Ozawa, Surface tension of liquid metals and alloys-Recent developments, Adv. Colloid Interface Sci., 159 2 (2010) 198-212.

DOI: 10.1016/j.cis.2010.06.009

Google Scholar

[29] F. Silze, G.Wiehl, I. Kaban, U. Kühn, J. Eckert, S. Pauly, Effect of Ga on the Wettability of CuGa10 on 304L Steel, Metall. Mater. Trans. B. 46 4 (2015) 1647-1653.

DOI: 10.1007/s11663-015-0331-0

Google Scholar