Improved Rectification Performance and Terahertz Detection in Hybrid Structure of Self-Switching Device (SSD) and Planar Barrier Diode (PBD) Using Two-Dimensional Device Simulation

Article Preview

Abstract:

Recently, simulations of In0.48Ga0.52As-based Planar Barrier Diode (PBD) and Self-Switching Device (SSD) as millimeter-wave rectifiers were reported. Both PBD and SSD have a planar structure, but with different insulating shapes and working principles. In this work, a hybrid structure of the reported PBD and SSD in a parallel configuration is proposed, to exploit the advantages of each device. The advantages of high rectifying properties in the SSD and fast switching rate of the PBD are combined in this hybrid structure in order to obtain an improved rectification performance at zero-bias in the near terahertz frequency region. Analysis of the curvature co-efficient, γ, which is defined as the ratio of the second order to the first order derivative of the device’s I-V function was performed to evaluate the rectification performance. AC transient analyses were then executed in various frequencies to imitate the high-frequency signal inputs. By using this hybrid structure, the highest value of γ achieved has been improved to ~19 V-1 at 70 mV, and ~6 V-1 at zero-bias (compared to the previous results on PBDs). The estimated cut-off frequency obtained was ~360 GHz (0.36 THz), operating at zero-bias.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 301)

Pages:

111-117

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yang, X., Zhao, X., Yang, K., Liu, Y., Liu, Y., Fu, W. and Luo, Y., 2016. Biomedical applications of terahertz spectroscopy and imaging. Trends in biotechnology, 34(10), pp.810-824.

DOI: 10.1016/j.tibtech.2016.04.008

Google Scholar

[2] C. Vicario, B. Monoszlai, M. Jazbinsek, S. H. Lee, S. H., Kwon, O. P., & Hauri, C. P. Intense, carrier frequency and bandwidth tunable quasi single-cycle pulses from an organic emitter covering the Terahertz frequency gap., Scientific reports 5:14394, (2015).

DOI: 10.1038/srep14394

Google Scholar

[3] Yu, M., Yan, S., Sun, Y.Q., Sheng, W., Tang, F., Peng, X.Y. and Hu, Y., 2019. Characterization of Nucleobases in Broadband Terahertz Spectra from 0.5 to 10 THz with the Air-Biased-Coherent-Detection Technique. Sensors, 19(5), p.1148.

DOI: 10.3390/s19051148

Google Scholar

[4] N. F. Zakaria, S. R. Kasjoo, M. M. Isa, Z. Zailan, M. K. M. Arshad, and S. Taking Self-switching Diodes as RF Rectifiers: Evaluation Methods and Current Progress., Bulletin of Electrical Engineering and Informatics 8.2, (2019).

DOI: 10.11591/eei.v8i2.1413

Google Scholar

[5] M. A. Laughton and D. F. Warne. Power semiconductor devices." Electrical engineer,s reference book, 2003, pp.25-27.

Google Scholar

[6] D. Dragoman and M. Dragoman, Geometrically induced rectification in two-dimensional ballistic nanodevices,, Journal of Physics D: Applied Physics, vol. 46, no. 5, p.055306, Jan (2013).

DOI: 10.1088/0022-3727/46/5/055306

Google Scholar

[7] V. Milanovic, M. Gaitan, J. C. Marshall, and M. E. Zaghloul, CMOS foundry implementation of Schottky diodes for RF detection,, IEEE Transactions on Electron Devices, vol. 43, no. 12, pp.2210-2214, Dec1996.

DOI: 10.1109/16.544393

Google Scholar

[8] A. M. Song, M. Missous, P. Omling, A. R. Peaker, L. Samuelson et al., Unidirectional electron flow in a nanometer-scale semiconductor channel: A self-switching device, Appl. Phys. Lett. 83, No 9, pp.1881-1883, (2003).

DOI: 10.1063/1.1606881

Google Scholar

[9] S. R. Kasjoo, Z. Zailan, N. F. Zakaria, M. M. Isa, M. K. M. Arshad, and S. Taking. An overview of self-switching diode rectifiers using green materials., In AIP Conference Proceedings, vol. 1885, no. 1, p.020257. AIP Publishing, (2017).

DOI: 10.1063/1.5002451

Google Scholar

[10] Zailan, Z., Zakaria, N.F., Isa, M.M., Taking, S., Arshad, M.K.M. and Kasjoo, S.R., 2016, May. Characterization of self-switching diodes as microwave rectifiers using ATLAS simulator. In 2016 5th International Symposium on Next-Generation Electronics (ISNE) (pp.1-2). IEEE.

DOI: 10.1109/isne.2016.7543286

Google Scholar

[11] Claudio Balocco, Shahrir R. Kasjoo, Xiaofeng F. Lu, et al, Room-temperature operation of a unipolar nanodiode at Terahertz frequencies,, Appl. Phys. Lett., 98:223501:1-3, (2011).

DOI: 10.1063/1.3595414

Google Scholar

[12] Balocco C, Halsall M, Vinh N Q, et al. THz operation of asymmetric-nanochannel devices, J Phys: Condens Matter, 20:384203:1-5, (2008).

DOI: 10.1088/0953-8984/20/38/384203

Google Scholar

[13] N. F. Zakaria, S. R. Kasjoo, Z. Zailan, M. M. Isa, M. K. M. Arshad, and S. Taking, InGaAs-based planar barrier diode as microwave rectifier,, Japanese Journal of Applied Physics, Vol. 57, No. 6, 2018,.

DOI: 10.7567/jjap.57.064101

Google Scholar

[14] N. F. Zakaria, S. R. Kasjoo, Z. Zailan, M. M. Isa, S. Taking, and M. K. M. Arshad, Permittivity and temperature effects on rectification performance of self-switching diodes with different geometrical structures using two-dimensional device simulator,. Solid-State Electronics, Vol. 138, pp.16-23, 2017,.

DOI: 10.1016/j.sse.2017.07.002

Google Scholar

[15] J. Mateos, T. González, D. Pardo, V. Hoel and A. Cappy, Monte Carlo simulator for the design optimization of low-noise HEMTs,, IEEE Trans. Electron Devices, Vol. 47, pp.1950-1956, (2000).

DOI: 10.1109/16.870579

Google Scholar

[16] N. F. Zakaria, S. R. Kasjoo, Z. Zailan, M. M. Isa, M. K. M. Arshad, & S. Taking (2016, August). Rectification performance of self-switching diode in various geometries using ATLAS simulator. In 2016 3rd International Conference on Electronic Design (ICED) (pp.361-364). IEEE.

DOI: 10.1109/iced.2016.7804668

Google Scholar

[17] S. R. Kasjoo, A. K. Singh, and A. M. Song, RF characterization of unipolar nanorectifiers at zero bias,, physica status solidi (a), 212(9), pp.2091-2097, 2015,.

DOI: 10.1002/pssa.201532147

Google Scholar

[18] Zakaria, N. F., et al. Permittivity and temperature effects to rectification performance of self-switching device using two-dimensional simulation., 2016 5th International Symposium on Next-Generation Electronics (ISNE). IEEE, (2016).

DOI: 10.1109/isne.2016.7543287

Google Scholar

[19] K. Y. Xu, X. F. Lu, A. M. Song, and G. Wang, Enhanced terahertz detection by localized surface plasma oscillations in a nanoscale unipolar diode,, Journal of Applied Physics, Vol. 103, No. 11, 2008,.

DOI: 10.1063/1.2937175

Google Scholar

[20] P. Periasamy et al., Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique,, Advanced Materials, Vol. 23 No. 27, pp.3080-3085, 2011,.

DOI: 10.1002/adma.201101115

Google Scholar

[21] M. L. Chin et al. Planar metal–insulator–metal diodes based on the Nb/Nb2O5/X material system., Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 31, no. 5: 051204, (2013).

DOI: 10.1116/1.4818313

Google Scholar