Photometric Detection of Heavy Metals Using Biosynthesized Gold Nanoparticles

Article Preview

Abstract:

Development of bio-reduction techniques for nanoparticles (NPs) synthesis in medical application remains a challenge to numerous researchers. This work reports a novel technique for the synthesis of gold nanoparticles (AuNP) using palm oil fronds extracts (POFE) in the present of ultrasound radiation. The POFE is a waste material available in abundance in Asia and some African countries. The functional groups in the POFE operate as a persuasive capping and possibly reduced Au3+ to Au0. The prepared AuNPs were characterized by UV-vis spectrophotometry, FTIR, DLS, FESEM, and XRD. The analysis of FTIR validates the coating of alkynes and phenolic composites on the AuNPs. This shows a feasible function of biomolecules for efficient stabilization of the AuNPs. Field emission scanning electron microscopy (FESEM) clearly show the morphology of the prepared AuNPs. The XRD patterns display the peaks of fcc crystal structures at (111), (200), (220), (311) and (222). A physical and photometric detection effect of ten heavy metals (Pb, Zn, Ni, Co, Cu, Hg, As, Cr, Fe, and Mn) were investigated using the biosynthesized AuNPs and only Cr metal was detected by the AuNPs when it concentration increased from 1 ppm to 50 ppm with a rapit decrease of intensity measured using UV-vis spectrocopy at room temperature. While, almost all metals ions are detected at elevated tempeture (45 – 50 °C).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 301)

Pages:

118-123

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Annadhasan, J. Kasthuri, and N. Rajendiran, Green synthesis of gold nanoparticles under sunlight irradiation and their colorimetric detection of Ni 2+ and Co 2+ ions,, RSC Adv., vol. 5, no. 15, p.11458–11468, Jan. (2015).

DOI: 10.1039/c4ra14034f

Google Scholar

[2] Y. Zhang, H. Peng, W. Huang, Y. Zhou, and D. Yan, Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles,, J. Colloid Interface Sci., vol. 325, no. 2, p.371–376, Sep. (2008).

DOI: 10.1016/j.jcis.2008.05.063

Google Scholar

[3] C.-L. Liu et al., Insulin-Directed Synthesis of Fluorescent Gold Nanoclusters: Preservation of Insulin Bioactivity and Versatility in Cell Imaging,, Angew. Chemie Int. Ed., vol. 50, no. 31, p.7056–7060, Jul. (2011).

DOI: 10.1002/anie.201100299

Google Scholar

[4] J. Yin et al., SERS-Active Nanoparticles for Sensitive and Selective Detection of Cadmium Ion (Cd 2+ ),, Chem. Mater., vol. 23, no. 21, p.4756–4764, Nov. (2011).

DOI: 10.1021/cm201791r

Google Scholar

[5] A. Corma and H. Garcia, Supported gold nanoparticles as catalysts for organic reactions,, Chem. Soc. Rev., vol. 37, no. 9, p.2096, Aug. (2008).

DOI: 10.1039/b707314n

Google Scholar

[6] C. Noguez and I. L. Garzón, Optically active metal nanoparticles,, Chem. Soc. Rev., vol. 38, no. 3, p.757, Feb. (2009).

DOI: 10.1039/b800404h

Google Scholar

[7] A. I. Usman, A. Abdul Aziz, and O. Abu Noqta, APPLICATION OF GREEN SYNTHESIS OF GOLD NANOPARTICLES: A REVIEW,, J. Teknol., vol. 81, no. 1, Dec. (2018).

DOI: 10.11113/jt.v81.11409

Google Scholar

[8] and G. K. W. Norsyuhada W. Shukri, Noriah Bidin*, Shumaila Islam, Synthesis of Au–Ag Alloy Nanoparticles in Deionized Water by Pulsed Laser Ablation Technique,, J. Nanosci. Nanotechnol, vol. 11, no. 7, p.4841–4851, (2018).

DOI: 10.1166/jnn.2018.15358

Google Scholar

[9] B. K. Sodipo, A. Abdul, A. Letter, E. : Bashiru, and K. Sodipo, A sonochemical approach to the direct surface functionalization of superparamagnetic iron oxide nanoparticles with (3-aminopropyl)triethoxysilane,, Malaysia Beilstein J. Nanotechnol, vol. 11800, p.1472–1476, (2014).

DOI: 10.3762/bjnano.5.160

Google Scholar

[10] N. A. Hammed, A. A. Aziz, A. I. Usman, and M. A. Qaeed, The sonochemical synthesis of vertically aligned ZnO nanorods and their UV photodetection properties: Effect of ZnO buffer layer,, Ultrason. Sonochem., Sep. (2018).

DOI: 10.1016/j.ultsonch.2018.09.020

Google Scholar

[11] A. I. Usman and A. Abdul Aziz, Optimization of biosynthesis gold nanoparticles via central composite design toward monodisperse,, Mater. Res. Express, vol. 6, no. 1, p.015051, Oct. (2018).

DOI: 10.1088/2053-1591/aae954

Google Scholar

[12] A. I. Usman, A. A. Aziz, and O. A. Noqta, Green sonochemical synthesis of gold nanoparticles using palm oil leaves extracts,, Mater. Today Proc., vol. 7, p.803–807, Jan. (2019).

DOI: 10.1016/j.matpr.2018.12.078

Google Scholar

[13] A. Sugunan, C. Thanachayanont, J. Dutta, and J. G. Hilborn, Heavy-metal ion sensors using chitosan-capped gold nanoparticles,, Sci. Technol. Adv. Mater., vol. 6, no. 3–4, p.335–340, Jan. (2005).

DOI: 10.1016/j.stam.2005.03.007

Google Scholar

[14] M. Annadhasan, T. Muthukumarasamyvel, V. R. Sankar Babu, and N. Rajendiran, Green Synthesized Silver and Gold Nanoparticles for Colorimetric Detection of Hg 2+ , Pb 2+ , and Mn 2+ in Aqueous Medium,, (2014).

DOI: 10.1021/sc400500z

Google Scholar

[15] M. Annadhasan, Highly selective and sensitive colorimetric detection of Hg (II) ions using green synthesized silver nanoparticles Metal nanoparticles based sensor View project Metal nanoparticles based devices View project,, (2015).

DOI: 10.1039/c5ra18106b

Google Scholar

[16] L. M. Liz-Marzán, Nanometals: formation and color, Mater.,, Mater. today, vol. 7, p.26–31, (2004).

Google Scholar

[17] P. Bollella et al., Green Synthesis and Characterization of Gold and Silver Nanoparticles and their Application for Development of a Third Generation Lactose Biosensor,, Electroanalysis, vol. 29, no. 1, p.77–86, (2017).

DOI: 10.1002/elan.201600476

Google Scholar

[18] E. B. El, E. B. El Domany, T. M. Essam, A. E. Ahmed, and A. A. Farghali, Biosynthesis Physico-Chemical Optimization of Gold Nanoparticles as Anti-Cancer and Synergetic Antimicrobial Activity Using Pleurotus ostreatus Fungus ARTICLE INFO ABSTRACT,, J. Appl. Pharm. Sci., vol. 8, no. 05, p.119–128, (2018).

DOI: 10.7324/japs.2018.8516

Google Scholar

[19] S. Ahmed, Annu, S. Ikram, and S. Yudha S., Biosynthesis of gold nanoparticles: A green approach,, J. Photochem. Photobiol. B Biol., vol. 161, p.141–153, Aug. (2016).

DOI: 10.1016/j.jphotobiol.2016.04.034

Google Scholar

[20] T. Ahmad, I. A. Wani, N. Manzoor, J. Ahmed, A. Kalam, and A. S. Al-Shihri, Structural Characterization, Antifungal Activity and Optical Properties of Gold Nanoparticles Prepared by Reverse Micelles,, Adv. Sci. Lett., vol. 20, no. 7, p.1631–1636, Jul. (2014).

DOI: 10.1166/asl.2014.5589

Google Scholar

[21] R. Majumdar, B. G. Bag, and P. Ghosh, Mimusops elengi bark extract mediated green synthesis of gold nanoparticles and study of its catalytic activity,, Appl. Nanosci., vol. 6, no. 4, p.521–528, (2016).

DOI: 10.1007/s13204-015-0454-2

Google Scholar

[22] K. B. Narayanan and N. Sakthivel, Coriander leaf mediated biosynthesis of gold nanoparticles,, Mater. Lett., vol. 62, no. 30, p.4588–4590, Dec. (2008).

DOI: 10.1016/j.matlet.2008.08.044

Google Scholar