Broadband Anti-Reflection in Black Silicon Fabricated by Two-Step Silver-Assisted Wet Chemical Etching for Photovoltaics

Article Preview

Abstract:

This paper reports broadband anti-reflection in black silicon (b-Si) fabricated by two-step metal-assisted chemical etching (MACE) for potential photovoltaic (PV) applications. The method involves deposition of silver nanoparticles (Ag NPs) in aqueous solution of HF:AgNO3, followed by etching in HF:H2O2:DI H2O solution for different duration (10-25 s). Effects of etching time towards surface morphological and optical properties of b-Si nanowires are investigated. Surface morphological characterization confirms presence of b-Si nanowires with heights of 350-570 nm and diameter of 150-300 nm. The b-Si nanowires exhibit outstanding broadband anti-reflection due to refractive index grading effect. This is represented as weighted average reflection (WAR) in the 300-1100 nm wavelength region. After 20 s of etching, b-Si nanowires with height of 570 nm and width of about 200 nm are produced. The nanowires demonstrate WAR of 5.5%, which represents the lowest WAR in this investigation. This results in absorption of 95.6% at wavelength of 600 nm. The enhanced broadband light absorption yields maximum potential short-circuit current density (Jsc(max)) of up to 39.7 mA/cm2, or 51% enhancement compared to c-Si reference. This facile b-Si fabrication method for broadband enhanced anti-reflection could be a promising technique to produce potential PV devices with high photocurrent.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 301)

Pages:

167-174

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Battaglia, A. Cuevas, and S. De Wolf, High-efficiency crystalline silicon solar cells: Status and perspectives,, Energy Environ. Sci., vol. 9, no. 5, p.1552–1576, (2016).

DOI: 10.1039/c5ee03380b

Google Scholar

[2] Y. F. Zhuang, S. H. Zhong, Z. G. Huang, and W. Z. Shen, Versatile strategies for improving the performance of diamond wire sawn mc-Si solar cells,, Sol. Energy Mater. Sol. Cells, vol. 153, p.18–24, (2016).

DOI: 10.1016/j.solmat.2016.04.014

Google Scholar

[3] E. Vazsonyi, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortmans, J. Szlufcik, and J. Nijs, Improved anisotropic etching process for industrial texturing of silicon solar cells,, Sol. Energy Mater. Sol. Cells, vol. 57, no. 2, p.179–188, (1999).

DOI: 10.1016/s0927-0248(98)00180-9

Google Scholar

[4] Y. Wang, L. Yang, Y. Liu, Z. Mei, W. Chen, J. Li, H. Liang, A. Kuznetsov, and D. Xiaolong, Maskless inverted pyramid texturization of silicon,, Sci. Rep., vol. 5, no. 0316, p.1–7, (2015).

DOI: 10.1038/srep10843

Google Scholar

[5] Z. Zhao, P. Li, Y. Wei, C. Lu, X. Tan, and A. Liu, 17.3% Efficient Black Silicon Solar Cell Without Dielectric Antireflection Coating,, Sol. Energy, vol. 110, p.714–719, (2014).

DOI: 10.1016/j.solener.2014.10.029

Google Scholar

[6] M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, Black silicon photovoltaics,, Adv. Opt. Mater., vol. 3, no. 2, p.147–164, (2015).

DOI: 10.1364/pv.2014.ptu2c.2

Google Scholar

[7] W. K. To, C. H. Tsang, H. H. Li, and Z. Huang, Fabrication of n-type mesoporous silicon nanowires by one-step etching,, Nano Lett., vol. 11, no. 12, p.5252–5258, (2011).

DOI: 10.1021/nl202674t

Google Scholar

[8] F. Es, M. Kulakci, and R. Turan, An Alternative Metal-Assisted Etching Route for Texturing Silicon Wafers for Solar Cell Applications,, IEEE J. Photovoltaics, vol. 6, no. 2, p.440–446, (2016).

DOI: 10.1109/jphotov.2016.2520207

Google Scholar

[9] Z. Huang, N. Geyer, P. Werner, J. De Boor, and U. Gösele, Metal-assisted chemical etching of silicon: A review,, Adv. Mater., vol. 23, no. 2, p.285–308, (2011).

DOI: 10.1002/adma.201001784

Google Scholar

[10] J. Oh, H. C. Yuan, and H. M. Branz, An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,, Nat. Nanotechnol., vol. 7, no. 11, p.743–748, (2012).

DOI: 10.1038/nnano.2012.166

Google Scholar

[11] M. Z. Pakhuruddin, J. Huang, J. Dore, and S. Varlamov, Enhanced light-trapping in laser-crystallised silicon thin-film solar cells on glass by optimised back surface reflectors,, Sol. Energy, vol. 150, p.477–484, (2017).

DOI: 10.1016/j.solener.2017.04.069

Google Scholar

[12] N. A. M. Noor, S. K. Mohamad, S. S. Hamil, M. Devarajan, and M. Z. Pakhuruddin, Effects of etching time towards broadband absorption enhancement in black silicon fabricated by silver-assisted chemical etching,, Optik (Stuttg)., vol. 176, no. November 2018, p.586–592, (2019).

DOI: 10.1016/j.ijleo.2018.09.096

Google Scholar

[13] S. K. Srivastava, D. Kumar, Vandana, M. Sharma, R. Kumar, and P. K. Singh, Silver catalyzed nano-texturing of silicon surfaces for solar cell applications,, Sol. Energy Mater. Sol. Cells, vol. 100, p.33–38, (2012).

DOI: 10.1016/j.solmat.2011.05.003

Google Scholar

[14] C. Chartier, S. Bastide, and C. Lévy-Clément, Metal-assisted chemical etching of silicon in HF-H2O2,, Electrochim. Acta, vol. 53, no. 17, p.5509–5516, (2008).

DOI: 10.1016/j.electacta.2008.03.009

Google Scholar

[15] W. Kern, The Evolution of Silicon Wafer Cleaning Technology,, J. Electrochem. Soc., vol. 137, no. 6, p.1887, (1990).

Google Scholar

[16] N. A. M. Noor, S. K. Mohamad, S. S. Hamil and M. Z. Pakhuruddin, Effects of annealing temperature towards surface morphological and optical properties of black silicon fabricated by silver-assisted chemical etching,, Mater. Sci. Semicond. Process., vol. 91, p.167–173, (2019).

DOI: 10.1016/j.mssp.2018.11.006

Google Scholar

[17] M. Z. Pakhuruddin, J. Huang, J. Dore, and S. Varlamov, Enhanced Absorption in Laser-Crystallized Silicon Thin Films on Textured Glass,, IEEE J. Photovoltaics, vol. 6, no. 4, p.852–859, (2016).

DOI: 10.1109/jphotov.2016.2545410

Google Scholar

[18] M. Abouda Lachiheb, N. Nafie, and M. Bouaicha, The dual role of silver during silicon etching in HF solution,, Nanoscale Res. Lett., vol. 7, p.3–7, (2012).

DOI: 10.1186/1556-276x-7-455

Google Scholar

[19] K. Peng, A. Lu, R. Zhang, and S. T. Lee, Motility of metal nanoparticles in silicon and induced anisotropic silicon etching,, Adv. Funct. Mater., vol. 18, no. 19, p.3026–3035, (2008).

DOI: 10.1002/adfm.200800371

Google Scholar

[20] Z. R. Smith, R. L. Smith, and S. D. Collins, Electrochimica Acta Mechanism of nanowire formation in metal assisted chemical etching,, vol. 92, p.139–147, (2013).

DOI: 10.1016/j.electacta.2012.12.075

Google Scholar

[21] C. H. Hsu, J. R. Wu, Y. T. Lu, D. J. Flood, A. R. Barron, and L. C. Chen, Fabrication and characteristics of black silicon for solar cell applications: An overview,, Mater. Sci. Semicond. Process., vol. 25, p.2–17, (2014).

DOI: 10.1016/j.mssp.2014.02.005

Google Scholar

[22] X. He, S. Li, W. Ma, Z. Ding, J. Yu, B. Qin, J. Yang, Y. X. Zou, and J. Qiu, A simple and low-cost chemical etching method for controllable fabrication of large-scale kinked silicon nanowires,, Mater. Lett., vol. 196, p.269–272, (2017).

DOI: 10.1016/j.matlet.2017.03.131

Google Scholar

[23] S. Li, W. Ma, X. Chen, K. Xie, Y. Li, X. He, X. Yang, and Y. Lei, Structure and antireflection properties of SiNWs arrays form mc-Si wafer through Ag-catalyzed chemical etching,, Appl. Surf. Sci., vol. 369, p.232–240, (2016).

DOI: 10.1016/j.apsusc.2016.02.028

Google Scholar