Photocatalytic Fuel Cell Based on Zinc Oxide Loaded Carbon Plate Photoanode for Simultaneous Photocatalytic Degradation of Azo Dyes and Electricity Generation

Article Preview

Abstract:

Photocatalytic fuel cell (PFC) is promising to own its synchronous degradation of organic pollutants with electricity generation under illumination of light. The oxidation and reduction process promote the conversion of chemical energy in the pollutants into electrical energy. In this study, PFC is driven by the electrode reactions between the zinc oxide loaded carbon plate (ZnO/C) photoanode and carbon plate cathode under irradiation of UVA light. The ZnO/C photoanode was successfully fabricated by using simple ultrasonication-annealed method and investigated by XRD, SEM and EDX. To investigate the capability of the PFC, reactive red 120 (RR120), congo red (CR) and acid orange 7 (AO7) are employed well compared among themselves. The results indicated that the molecular structure of azo dyes with different adsorption of light by dye itself, number of azo bonds and sulfonic groups can be the crucial factors of decolorization in the PFC. The photocatalytic fuel cell with AO7 as sacrificial agent was able to perform 82.43% of decolorization efficiency, a maximum short circuit current (JSC) of 0.0017 mA cm-2 and maximum power density (Pmax) of 0.0886 µW cm-2.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 301)

Pages:

175-182

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Carneiro, P. A., Umbuzeiro, G. A., Oliveira, D. P., & Zanoni, M. V. B.. Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes. Journal of hazardous materials, 2010. 174(1-3), 694-699.

DOI: 10.1016/j.jhazmat.2009.09.106

Google Scholar

[2] Khataee, A.R. and M.B. Kasiri, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes. Journal of Molecular Catalysis A: Chemical, 2010. 328(1): pp.8-26.

DOI: 10.1016/j.molcata.2010.05.023

Google Scholar

[3] Garcia-Segura, S., F. Centellas, C. Arias, J.A. Garrido, R.M. Rodríguez, P.L. Cabot, and E. Brillas, Comparative decolorization of monoazo, diazo and triazo dyes by electro-Fenton process. Electrochimica Acta, 2011. 58: pp.303-311.

DOI: 10.1016/j.electacta.2011.09.049

Google Scholar

[4] Neppolian, B., H.C. Choi, S. Sakthivel, B. Arabindoo, and V. Murugesan, Solar/UV-induced photocatalytic degradation of three commercial textile dyes. Journal of Hazardous Materials, 2002. 89(2): pp.303-317.

DOI: 10.1016/s0304-3894(01)00329-6

Google Scholar

[5] Li, N., S. Tang, Y. Rao, J. Qi, Q. Zhang, and D. Yuan, Peroxymonosulfate enhanced antibiotic removal and synchronous electricity generation in a photocatalytic fuel cell. Electrochimica Acta, 2019. 298: pp.59-69.

DOI: 10.1016/j.electacta.2018.12.063

Google Scholar

[6] Bai, J., R. Wang, Y. Li, Y. Tang, Q. Zeng, L. Xia, X. Li, J. Li, C. Li, and B. Zhou, A solar light driven dual photoelectrode photocatalytic fuel cell (PFC) for simultaneous wastewater treatment and electricity generation. Journal of Hazardous Materials, 2016. 311: pp.51-62.

DOI: 10.1016/j.jhazmat.2016.02.052

Google Scholar

[7] Li, K., Y. Xu, Y. He, C. Yang, Y. Wang, and J. Jia, Photocatalytic fuel cell (PFC) and dye self-photosensitization photocatalytic fuel cell (DSPFC) with BiOCl/Ti photoanode under UV and visible light irradiation. Environmental Science & Technology, 2013. 47(7): pp.3490-3497.

DOI: 10.1021/es303968n

Google Scholar

[8] Xie, S. and K. Ouyang, Degradation of refractory organic compounds by photocatalytic fuel cell with solar responsive WO3/FTO photoanode and air-breathing cathode. Journal of Colloid and Interface Science, 2017. 500: pp.220-227.

DOI: 10.1016/j.jcis.2017.04.002

Google Scholar

[9] Xie, S., K. Ouyang, and Y. Shao, A solar responsive photocatalytic fuel cell with a heterostructured ZnFe2O4/TiO2-NTs photoanode and an air-breathing cathode. International Journal of Hydrogen Energy, 2017. 42(49): pp.29201-29209.

DOI: 10.1016/j.ijhydene.2017.10.059

Google Scholar

[10] Lee, S.-L., L.-N. Ho, S.-A. Ong, Y.-S. Wong, C.-H. Voon, W.F. Khalik, N.A. Yusoff, and N. Nordin, A highly efficient immobilized ZnO/Zn photoanode for degradation of azo dye Reactive Green 19 in a photocatalytic fuel cell. Chemosphere, 2017. 166: pp.118-125.

DOI: 10.1016/j.chemosphere.2016.09.082

Google Scholar

[11] Xia, M., R. Chen, X. Zhu, Q. Liao, L. An, Z. Wang, X. He, and L. Jiao, A micro photocatalytic fuel cell with an air-breathing, membraneless and monolithic design. Science Bulletin, 2016. 61(21): pp.1699-1710.

DOI: 10.1007/s11434-016-1178-8

Google Scholar

[12] Zhao, K., J. Bai, Q. Zeng, Y. Zhang, J. Li, L. Li, L. Xia, and B. Zhou, Efficient wastewater treatment and simultaneously electricity production using a photocatalytic fuel cell based on the radical chain reactions initiated by dual photoelectrodes. Journal of Hazardous Materials, 2017. 337: pp.47-54.

DOI: 10.1016/j.jhazmat.2017.05.004

Google Scholar

[13] Liu, Y., J. Li, B. Zhou, X. Li, H. Chen, Q. Chen, Z. Wang, L. Li, J. Wang, and W. Cai, Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell. Water Research, 2011. 45(13): pp.3991-3998.

DOI: 10.1016/j.watres.2011.05.004

Google Scholar

[14] Li, J., J. Li, Q. Chen, J. Bai, and B. Zhou, Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell. Journal of hazardous materials, 2013. 262: pp.304-310.

DOI: 10.1016/j.jhazmat.2013.08.066

Google Scholar

[15] Nahyoon, N.A., L. Liu, K. Rabe, K.H. Thebo, L. Yuan, J. Sun, and F. Yang, Significant photocatalytic degradation and electricity generation in the photocatalytic fuel cell (PFC) using novel anodic nanocomposite of Fe, graphene oxide, and titanium phosphate. Electrochimica Acta, 2018. 271: pp.41-48.

DOI: 10.1016/j.electacta.2018.03.109

Google Scholar

[16] Liao, Q., L. Li, R. Chen, X. Zhu, H. Wang, D. Ye, X. Cheng, M. Zhang, and Y. Zhou, Respective electrode potential characteristics of photocatalytic fuel cell with visible-light responsive photoanode and air-breathing cathode. International Journal of Hydrogen Energy, 2015. 40(46): pp.16547-16555.

DOI: 10.1016/j.ijhydene.2015.10.002

Google Scholar

[17] Bizarro, M., A. Sánchez-Arzate, I. Garduño-Wilches, J.C. Alonso, and A. Ortiz, Synthesis and characterization of ZnO and ZnO:Al by spray pyrolysis with high photocatalytic properties. Catalysis Today, 2011. 166(1): pp.129-134.

DOI: 10.1016/j.cattod.2010.08.005

Google Scholar

[18] Ghaly, M.Y., M.E.M. Ali, L. Österlund, I.A. Khattab, M.I. Badawy, J.Y. Farah, F.M. Zaher, and M.N. Al-Maghrabi, ZnO/spiral-shaped glass for solar photocatalytic oxidation of Reactive Red 120. Arabian Journal of Chemistry, 2017. 10: p. S3501-S3507.

DOI: 10.1016/j.arabjc.2014.02.015

Google Scholar

[19] Lee, S.-L., L.-N. Ho, S.-A. Ong, Y.-S. Wong, C.-H. Voon, W.F. Khalik, N.A. Yusoff, and N. Nordin, Enhanced electricity generation and degradation of the azo dye Reactive Green 19 in a photocatalytic fuel cell using ZnO/Zn as the photoanode. Journal of Cleaner Production, 2016. 127: pp.579-584.

DOI: 10.1016/j.jclepro.2016.03.169

Google Scholar

[20] Khalik, W.F., L.-N. Ho, S.-A. Ong, Y.-S. Wong, N.A. Yusoff, and F. Ridwan, Decolorization and mineralization of batik wastewater through solar photocatalytic process. Sains Malaysiana, 2015. 44(4): pp.607-612.

DOI: 10.17576/jsm-2015-4404-16

Google Scholar

[21] Ong, Y.-P., L.-N. Ho, S.-A. Ong, J. Banjuraizah, A.H. Ibrahim, S.-L. Lee, and N. Nordin, A synergistic heterostructured ZnO/BaTiO3 loaded carbon photoanode in photocatalytic fuel cell for degradation of Reactive Red 120 and electricity generation. Chemosphere, 2019. 219: pp.277-285.

DOI: 10.1016/j.chemosphere.2018.12.004

Google Scholar

[22] Guillard, C., H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, and J.-M. Herrmann, Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2003. 158(1): pp.27-36.

DOI: 10.1016/s1010-6030(03)00016-9

Google Scholar

[23] Hsueh, C.-C. and B.-Y. Chen, Comparative study on reaction selectivity of azo dye decolorization by Pseudomonas luteola. Journal of Hazardous Materials, 2007. 141(3): pp.842-849.

DOI: 10.1016/j.jhazmat.2006.07.056

Google Scholar

[24] Wu, C.-H., Comparison of azo dye degradation efficiency using UV/single semiconductor and UV/coupled semiconductor systems. Chemosphere, 2004. 57(7): pp.601-608.

DOI: 10.1016/j.chemosphere.2004.07.008

Google Scholar

[25] Khataee, A.R., M.N. Pons, and O. Zahraa, Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: Influence of dye molecular structure. Journal of Hazardous Materials, 2009. 168(1): pp.451-457.

DOI: 10.1016/j.jhazmat.2009.02.052

Google Scholar

[26] Damodar, R.A., K. Jagannathan, and T. Swaminathan, Decolourization of reactive dyes by thin film immobilized surface photoreactor using solar irradiation. Solar Energy, 2007. 81(1): pp.1-7.

DOI: 10.1016/j.solener.2006.07.001

Google Scholar

[27] Lianos, P., Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: the concept of the photofuelcell: a review of a re-emerging research field. Journal of Hazardous Materials, 2011. 185(2-3): pp.575-590.

DOI: 10.1016/j.jhazmat.2010.10.083

Google Scholar

[28] Kamat, P.V. and D. Meisel, Nanoparticles in advanced oxidation processes. Current Opinion in Colloid & Interface Science, 2002. 7(5-6): pp.282-287.

DOI: 10.1016/s1359-0294(02)00069-9

Google Scholar

[29] Li, K., H. Zhang, T. Tang, Y. Xu, D. Ying, Y. Wang, and J. Jia, Optimization and application of TiO2/Ti–Pt photo fuel cell (PFC) to effectively generate electricity and degrade organic pollutants simultaneously. Water Research, 2014. 62: pp.1-10.

DOI: 10.1016/j.watres.2014.05.044

Google Scholar