Ray Tracing of Light Trapping Schemes in Thin Crystalline Silicon for Photovoltaics

Article Preview

Abstract:

Thin crystalline silicon (c-Si) suffers from poor light absorption which hinders generation of high photocurrent in photovoltaic (PV) devices. To overcome this issue, efficient light trapping (LT) schemes need to be incorporated into the thin c-Si absorber. This paper presents ray tracing of LT schemes in thin c-Si to enhance broadband light absorption within 300-1200 nm wavelength region. For the ray tracing, mono c-Si wafer with 100 μm thickness is investigated and solar spectrum (AM1.5G) at normal incidence is used. Front and rear pyramid textures, silicon nitride (SiNx) anti-reflective coating (ARC) and back surface reflector (BSR) are the LT schemes being studied in this work. With incremental LT schemes, optical properties of the thin c-Si are analyzed. From the absorption curve, maximum potential photocurrent density (Jmax) is calculated, assuming unity carrier collection. The c-Si reference (without LT) exhibits Jmax of 24.93 mA/cm2. With incorporation of incremental LT schemes into the thin c-Si, the Jmax increases, owing to enhanced light coupling and light scattering in the c-Si absorber. The Jmax up to 42.12 mA/cm2 is achieved when all the LT schemes are incorporated into the thin c-Si absorber. This represents 69% enhancement when compared to the Jmax of the c-Si reference.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 301)

Pages:

183-191

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. A. Green, Commercial progress and challenges for photovoltaics, Nature Energy 1 (2016) 15015-1 – 15015-5.

Google Scholar

[2] L. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, L. Redorici, Silicon solar cells: toward the efficiency limits, Advances in Physics: X 4 (2018) 1548305-1 - 1548305-24.

DOI: 10.1080/23746149.2018.1548305

Google Scholar

[3] Information on https://itrpv.vdma.org/.

Google Scholar

[4] P. P. Altermatt, Y. Chen, Y. Yang, A. Ali, P. J. Verlinden, Optical properties of industrially mass-produced crystalline silicon solar cells and prospects for improvements, in Light, Energy and the Environment, OSA Technical Digest (online) (Optical Society of America, 2016), Paper JTh1A.2.

DOI: 10.1364/fts.2016.jth1a.2

Google Scholar

[5] D. Payne, T.H. Fung, M.U. Khan, J.C. Campa, K. McIntosh, M. Abbott, Understanding the optics of industrial black silicon, AIP Conference Proceedings 1999 (2018) 050007-1-050007-8.

DOI: 10.1063/1.5049297

Google Scholar

[6] Y. Wan, K. McIntosh, A. F. Thomson, Characterisation and optimisation of PECVD SiNx as an antireflection coating and passivation layer for silicon solar cells, AIP Advances 3 (2013) 032113-1 – 032113-14.

DOI: 10.1063/1.4795108

Google Scholar

[7] C. Barugkin, F. J. Beck, K. R. Catchpole, Diffuse reflectors for improving light management in solar cells: A review and outlook, Journal of Optics 19 (2017) 014001-1 - 014001-2.

DOI: 10.1088/2040-8978/19/1/014001

Google Scholar

[8] K. McIntosh, M. Abbott, B. Sudbury, Ray tracing isotextured solar cells, Energy Procedia 92 (2016) 122-129.

DOI: 10.1016/j.egypro.2016.07.041

Google Scholar

[9] Information on https://www.pvlighthouse.com.au/.

Google Scholar

[10] O. Höhn, N. Tucher, B. Bläsi, Impact of front side pyramid size on the light trapping performance of wafer-based silicon solar cells and modules, IEEE 44th Photovoltaic Specialist Conference (PVSC) (2017).

DOI: 10.1109/pvsc.2017.8366607

Google Scholar

[11] S. C. Baker-Finch, K. R. McIntosh, Reflection of normally incident light from silicon solar cells with pyramidal texture, Progress in Photovoltaics: Research and Applications 19 (2011) 406-416.

DOI: 10.1002/pip.1050

Google Scholar

[12] K. W. A. Chee, Z. Tang, H. Lü, F. Huang, Anti-reflective structures for photovoltaics: Numerical and experimental design, Energy Reports 4 (2018) 266-273.

DOI: 10.1016/j.egyr.2018.02.002

Google Scholar

[13] Information on https://rredc.nrel.gov/solar//spectra/am1.5/.

Google Scholar

[14] M. Z. Pakhuruddin, J. Huang, J. Dore, S. Varlamov, Enhanced light-trapping in laser-crystallised silicon thin-film solar cells on glass by optimised back surface reflectors, Solar Energy 150 (2017) 477-484.

DOI: 10.1016/j.solener.2017.04.069

Google Scholar

[15] M. Z. Pakhuruddin, J. Huang, J. Dore, S. Varlamov, Rear texturing for light-trapping in laser-crystallised silicon thin-film solar cells on glass, Solar Energy 166 (2018) 213-219.

DOI: 10.1016/j.solener.2018.03.055

Google Scholar

[16] M. Z. Pakhuruddin, J. Huang, J. Dore, S. Varlamov, Enhanced absorption in laser-crystallized silicon thin films on textured glass, IEEE Journal of Photovoltaics 6 (2016) 852-859.

DOI: 10.1109/jphotov.2016.2545410

Google Scholar

[17] A. Najar, J. Charrier, P. Pirasteh, R. Sougrat, Ultra-low reflection porous silicon nanowires for solar cell applications, Optics Express 20 (2012) 16861-1 - 16861-10.

DOI: 10.1364/oe.20.016861

Google Scholar

[18] J. K. Selj, D. Young, S. Grover, Optimization of the antireflection coating of thin epitaxial crystalline silicon solar cells, Energy Procedia 77 (2015) 248-252.

DOI: 10.1016/j.egypro.2015.07.035

Google Scholar

[19] M. A. Green, The path to 25% silicon solar cell efficiency: History of silicon cell evolution, Progress in Photovoltaics: Research and Applications 17 (2009) 183-189.

DOI: 10.1002/pip.892

Google Scholar

[20] F. Haase, S. Eidelloth, R. Horbelt, K. Bothe, E. G. Rojas, R. Brendel, Loss analysis of back-contact back-junction thin-film monocrystalline silicon solar cells, Journal of Applied Physics 110 (2011) 124510-1 – 124510-9.

DOI: 10.1063/1.3669388

Google Scholar

[21] T. Tiedje, E. Yablonovitch, G. D. Cody, B. G. Brooks, Limiting efficiency of silicon solar cells, IEEE Transactions on Electron Devices, 31 (1984) 711-716.

DOI: 10.1109/t-ed.1984.21594

Google Scholar