Effect of Acetylation Contact Time to the Physical and Mechanical Properties of Jack Fruit Rind Cellulose Acetate (JR-CA) Reinforced Gelatine Film

Article Preview

Abstract:

Natural based film have been studied as a possible replacement for the conventional films because it can be developed from natural sources. The aim of this study is to investigate the effect of acetylation contact time to the physical and mechanical properties of the jackfruit rind based cellulose acetate film. Acetylation of jackfruit rind based cellulose was studied and samples with different degree of substitution were obtained as a function of contact time from 1 hour to 24 hours. The products were characterized by saponification reaction. In this study, saponifcation reaction showed that, more hydroxyl group were substituted with acetyl groups as the contact time of acetylation increased. The Cellulose Acetate (CA) had been mixed in the gelatine matrix film. The addition of jackfruit rind based CA showed that the moisture uptake and solubility of the film decreased compared to Cellulose/Gelatine composite film. This is because acetyl groups are more hydrophobic than hydroxyl groups thus reducing the hydophilic nature of cellulose. Additionally, from the tensile test, it was proven that the film with CA of 24 hours contact time exhibits the highest tensile strength.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 301)

Pages:

219-226

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Gordobil, I. Egüés, I. Urruzola, and J. Labidi, Xylan–cellulose films: Improvement of hydrophobicity, thermal and mechanical properties,, Carbohydrate polymers, vol. 112, pp.56-62, (2014).

DOI: 10.1016/j.carbpol.2014.05.060

Google Scholar

[2] I. Egüés, A. M. Stepan, A. Eceiza, G. Toriz, P. Gatenholm, and J. Labidi, Corncob arabinoxylan for new materials,, Carbohydrate polymers, vol. 102, pp.12-20, (2014).

DOI: 10.1016/j.carbpol.2013.11.011

Google Scholar

[3] M. S. Madruga, F. S. M. de Albuquerque, I. R. A. Silva, D. S. do Amaral, M. Magnani, and V. Q. Neto, Chemical, morphological and functional properties of Brazilian jackfruit (Artocarpus heterophyllus L.) seeds starch,, Food chemistry, vol. 143, pp.440-445, (2014).

DOI: 10.1016/j.foodchem.2013.08.003

Google Scholar

[4] Y.-M. Tao, S. Wang, H.-L. Luo, and W.-W. Yan, Peroxidase from jackfruit: Purification, characterization and thermal inactivation,, International journal of biological macromolecules, vol. 114, pp.898-905, (2018).

DOI: 10.1016/j.ijbiomac.2018.04.007

Google Scholar

[5] S.-Y. Xu, J.-P. Liu, X. Huang, L.-P. Du, F.-L. Shi, R. Dong, et al., Ultrasonic-microwave assisted extraction, characterization and biological activity of pectin from jackfruit peel,, LWT, vol. 90, pp.577-582, (2018).

DOI: 10.1016/j.lwt.2018.01.007

Google Scholar

[6] A. A. Sundarraj and T. V. Ranganathan, Physicochemical characterization of jackfruit (Artocarpus integer (Thumb.).),, RESEARCH JOURNAL OF PHARMACEUTICAL BIOLOGICAL AND CHEMICAL SCIENCES, vol. 8, pp.2285-2295, (2017).

Google Scholar

[7] S. Deng, R. Huang, M. Zhou, F. Chen, and Q. Fu, Hydrophobic cellulose films with excellent strength and toughness via ball milling activated acylation of microfibrillated cellulose,, Carbohydrate polymers, vol. 154, pp.129-138, (2016).

DOI: 10.1016/j.carbpol.2016.07.101

Google Scholar

[8] G. Fan, M. Wang, C. Liao, T. Fang, J. Li, and R. Zhou, Isolation of cellulose from rice straw and its conversion into cellulose acetate catalyzed by phosphotungstic acid,, Carbohydrate polymers, vol. 94, pp.71-76, (2013).

DOI: 10.1016/j.carbpol.2013.01.073

Google Scholar

[9] A. Ashori, M. Babaee, M. Jonoobi, and Y. Hamzeh, Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion,, Carbohydrate polymers, vol. 102, pp.369-375, (2014).

DOI: 10.1016/j.carbpol.2013.11.067

Google Scholar

[10] W. Rodríguez-Castellanos, D. Rodrigue, F. Martínez-Bustos, O. Jiménez-Arévalo, and T. Stevanovic, Production and characterization of gelatin-starch polymer matrix reinforced with cellulose fibers,, Polymers from Renewable Resources, vol. 6, pp.105-118, (2015).

DOI: 10.1177/204124791500600303

Google Scholar

[11] P. Koh, C. Leong, and M. Noranizan, Microwave-assisted extraction of pectin from jackfruit rinds using different power levels,, International Food Research Journal, vol. 21, (2014).

Google Scholar

[12] S. Razak, W. Rahman, and N. Majid, Effect of jackfruit rind-based cellulose (JR-CEL.) on physical and mechanical properties of the biodegradable glycerol/gelatine matrix film,, in AIP Conference Proceedings, 2018, p.020075.

DOI: 10.1063/1.5062701

Google Scholar

[13] A. Bello, M. T. Isa, B. O. Aderemi, and B. Mukhtar, Acetylation of cotton stalk for cellulose acetate production,, American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), vol. 15, pp.137-150, (2016).

Google Scholar

[14] H. M. Shaikh, K. V. Pandare, G. Nair, and A. J. Varma, Utilization of sugarcane bagasse cellulose for producing cellulose acetates: Novel use of residual hemicellulose as plasticizer,, Carbohydrate Polymers, vol. 76, pp.23-29, (2009).

DOI: 10.1016/j.carbpol.2008.09.014

Google Scholar

[15] M. Gomaa, A. F. Hifney, M. A. Fawzy, and K. M. Abdel-Gawad, Use of seaweed and filamentous fungus derived polysaccharides in the development of alginate-chitosan edible films containing fucoidan: Study of moisture sorption, polyphenol release and antioxidant properties,, Food Hydrocolloids, vol. 82, pp.239-247, (2018).

DOI: 10.1016/j.foodhyd.2018.03.056

Google Scholar

[16] A. Ayoub, R. A. Venditti, J. J. Pawlak, H. Sadeghifar, and A. Salam, Development of an acetylation reaction of switchgrass hemicellulose in ionic liquid without catalyst,, Industrial crops and Products, vol. 44, pp.306-314, (2013).

DOI: 10.1016/j.indcrop.2012.10.036

Google Scholar

[17] A. N. Adilah, B. Jamilah, M. Noranizan, and Z. N. Hanani, Utilization of mango peel extracts on the biodegradable films for active packaging,, Food packaging and shelf life, vol. 16, pp.1-7, (2018).

DOI: 10.1016/j.fpsl.2018.01.006

Google Scholar

[18] A. Golachowski, T. Zięba, M. Kapelko-Żeberska, W. Drożdż, A. Gryszkin, and M. Grzechac, Current research addressing starch acetylation,, Food chemistry, vol. 176, pp.350-356, (2015).

DOI: 10.1016/j.foodchem.2014.12.060

Google Scholar

[19] J. A. Á. Ramírez, C. G. Hoyos, S. Arroyo, P. Cerrutti, and M. L. Foresti, Acetylation of bacterial cellulose catalyzed by citric acid: Use of reaction conditions for tailoring the esterification extent,, Carbohydrate polymers, vol. 153, pp.686-695, (2016).

DOI: 10.1016/j.carbpol.2016.08.009

Google Scholar

[20] Y. Zhang, S. Yang, J.-Q. Wu, T.-Q. Yuan, and R.-C. Sun, Preparation and characterization of lignocellulosic oil sorbent by hydrothermal treatment of Populus fiber,, Materials, vol. 7, pp.6733-6747, (2014).

DOI: 10.3390/ma7096733

Google Scholar

[21] G. Tedeschi, S. Guzman-Puyol, U. C. Paul, M. J. Barthel, L. Goldoni, G. Caputo, et al., Thermoplastic cellulose acetate oleate films with high barrier properties and ductile behaviour,, Chemical Engineering Journal, vol. 348, pp.840-849, (2018).

DOI: 10.1016/j.cej.2018.05.031

Google Scholar

[22] R. Candido, G. Godoy, and A. R. Gonçalves, Characterization and application of cellulose acetate synthesized from sugarcane bagasse,, Carbohydrate polymers, vol. 167, pp.280-289, (2017).

DOI: 10.1016/j.carbpol.2017.03.057

Google Scholar

[23] S. Gemili, A. Yemenicioğlu, and S. A. Altınkaya, Development of cellulose acetate based antimicrobial food packaging materials for controlled release of lysozyme,, Journal of Food Engineering, vol. 90, pp.453-462, (2009).

DOI: 10.1016/j.jfoodeng.2008.07.014

Google Scholar

[24] R. Singanusong, W. Tochampa, T. Kongbangkerd, and C. Sodchit, Extraction and properties of cellulose from banana peels,, Suranaree Journal of Science and Technology, vol. 21, pp.201-213, (2014).

Google Scholar

[25] W. A. Rahman, S. N. A. Sudin, and S. N. Din, Physical and mechanical properties of Pandanus amaryllifolius fiber reinforced low density polyethylene composite for packaging application,, in 2012 IEEE Symposium on Humanities, Science and Engineering Research, 2012, pp.345-349.

DOI: 10.1109/shuser.2012.6268868

Google Scholar