Study on Effect of Fiber Orientation on Flexural Properties of Glass Fiber Reinforced Epoxy Composite Laminates for Structural Applications

Article Preview

Abstract:

Composite laminate design is an important procedure in defining the mechanical properties of laminated composite structure to be used in multi-directional service loading application. Composite technologies or manufacturers who is lack of knowledge regarding the importance of laminate design, tend to develop a composite structure that will collapse or fail below the service requirement. The purpose of this study is to determine the effect of fiber orientation on flexural properties of the designed glass fiber reinforced epoxy laminated composite. Six sets of laminates with different fiber orientation and sequence were simulated using CompositeStar© software to determine its flexural properties. Samples were fabricated to verify the simulated data and were tested in accordance to ASTM D2344. Moreover, crack pattern within the samples after the flexural test is studied. From the simulated results, it shows that laminates which have fiber in tri-direction and quasi-direction display a higher flexural modulus and strength compared to laminates with fiber in uni-directional and bi-directional. In addition, data from tested fabricated laminates samples displayed the same modulus patterns against the simulated data, with variants from 8% to 35%. Additionally, it is found that samples with fiber in ±45 direction shows a transverse and shear cracking which prolonged the cracking propagation before the samples show a complete failure.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 301)

Pages:

227-237

Citation:

Online since:

March 2020

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. M. R. Khalili and B. Saboori, Transient dynamic analysis of tapered FRP composite transmission poles using finite element method,, Compos. Struct., vol. 92, no. 2, p.275–283, (2010).

DOI: 10.1016/j.compstruct.2009.07.026

Google Scholar

[2] F. X. Irisarri, A. Lasseigne, F. H. Leroy, and R. Le Riche, Optimal design of laminated composite structures with ply drops using stacking sequence tables,, Compos. Struct., vol. 107, p.559–569, (2014).

DOI: 10.1016/j.compstruct.2013.08.030

Google Scholar

[3] V. Shubina, L. Gaillet, T. Chaussadent, T. Meylheuc, and J. Creus, Biomolecules as a sustainable protection against corrosion of reinforced carbon steel in concrete,, J. Clean. Prod., vol. 112, p.1–6, (2015).

DOI: 10.1016/j.jclepro.2015.07.124

Google Scholar

[4] B. Saboori and S. M. R. Khalili, Static analysis of tapered FRP transmission poles using finite element method,, Finite Elem. Anal. Des., vol. 47, no. 3, p.247–255, (2011).

DOI: 10.1016/j.finel.2010.10.002

Google Scholar

[5] A. Z. Fam and J.-K. Son, Finite element modeling of hollow and concrete-filled fiber composite tubes in flexure: Optimization of partial filling and a design method for poles,, Eng. Struct., vol. 30, no. 10, p.2667–2676, (2008).

DOI: 10.1016/j.engstruct.2008.02.015

Google Scholar

[6] L. Caracoglia and A. Velazquez, Experimental comparison of the dynamic performance for steel, aluminum and glass-fiber-reinforced-polymer light poles,, Eng. Struct., vol. 30, no. 4, p.1113–1123, (2008).

DOI: 10.1016/j.engstruct.2007.07.024

Google Scholar

[7] A. Kumar, S. Panda, S. Kumar, and D. Chakraborty, A design of laminated composite plates using graded orthotropic fiber-reinforced composite plies,, Compos. Part B Eng., vol. 79, p.476–493, (2015).

DOI: 10.1016/j.compositesb.2015.05.009

Google Scholar

[8] R. M. Christensen, Failure Criteria for Anisotropic Fiber Composite Materials,, Fail. Theory Mater. Sci. Eng., (2008).

Google Scholar

[9] G. Soremekun, Z. Gürdal, R. T. Haftka, and L. T. Watson, Composite laminate design optimization by genetic algorithm with generalized elitist selection,, Comput. Struct., vol. 79, no. 2, p.131–143, (2001).

DOI: 10.1016/s0045-7949(00)00125-5

Google Scholar

[10] M. R. Ahmadian, A. Vincenti, and P. Vannucci, A general strategy for the optimal design of composite laminates by the polar-genetic method,, Mater. Des., vol. 32, no. 4, p.2317–2327, (2011).

DOI: 10.1016/j.matdes.2010.08.036

Google Scholar

[11] C. Laval, M. Sa, and C. Star, Composites design in Designing with composites is a complex process . Christian Laval of MATERIAL SA,, no. September, p.50–53, (2003).

Google Scholar

[12] H. Fadli, A. Marzuki, and M. Jaafar, Laminate Design of Lightweight Glass Fiber Reinforced Epoxy Composite for Electrical Transmission Structure,, Procedia Chem., vol. 19, p.871–878, (2016).

DOI: 10.1016/j.proche.2016.03.128

Google Scholar

[13] M. Bodaghi, C. Cristóvão, R. Gomes, and N. C. Correia, Experimental characterization of voids in high fibre volume fraction composites processed by high injection pressure RTM,, Compos. Part A Appl. Sci. Manuf., vol. 82, p.88–99, (2016).

DOI: 10.1016/j.compositesa.2015.11.042

Google Scholar

[14] N. Graupner, G. Ziegmann, F. Wilde, F. Beckmann, and J. Müssig, Procedural influences on compression and injection moulded cellulose fibre-reinforced polylactide (PLA) composites: Influence of fibre loading, fibre length, fibre orientation and voids,, Compos. Part A Appl. Sci. Manuf., vol. 81, p.158–171, (2016).

DOI: 10.1016/j.compositesa.2015.10.040

Google Scholar

[15] L. Zhuang and R. Talreja, Effects of voids on postbuckling delamination growth in unidirectional composites,, Int. J. Solids Struct., vol. 51, no. 5, p.936–944, (2014).

DOI: 10.1016/j.ijsolstr.2013.11.021

Google Scholar

[16] W. V. Liebig, C. Viets, K. Schulte, and B. Fiedler, Influence of voids on the compressive failure behaviour of fibrereinforced composites,, Compos. Sci. Technol., vol. 117, p.225–233, (2015).

DOI: 10.1016/j.compscitech.2015.06.020

Google Scholar

[17] Z. Jing, X. Fan, and Q. Sun, Stacking sequence optimization of composite laminates for maximum buckling load using permutation search algorithm,, Compos. Struct., vol. 121, p.225–236, (2015).

DOI: 10.1016/j.compstruct.2014.10.031

Google Scholar

[18] U. A. Khashaba, T. A. Sebaey, and K. A. Alnefaie, Failure and reliability analysis of pinned-joints composite laminates: Effects of stacking sequences,, Compos. Part B Eng., vol. 45, no. 1, p.1694–1703, (2013).

DOI: 10.1016/j.compositesb.2012.09.066

Google Scholar

[19] T. J. C. Liu and H. C. Wu, Fiber direction and stacking sequence design for bicycle frame made of carbon/epoxy composite laminate,, Mater. Des., vol. 31, no. 4, p.1971–1980, (2010).

DOI: 10.1016/j.matdes.2009.10.036

Google Scholar

[20] M. Heidari-rarani, S. S. Khalkhali-sharifi, and M. M. Shokrieh, Effect of ply stacking sequence on buckling behavior of E-glass / epoxy laminated composites,, Comput. Mater. Sci., vol. 89, p.89–96, (2014).

DOI: 10.1016/j.commatsci.2014.03.017

Google Scholar

[21] D. M. J. Peeters, S. Hesse, and M. M. Abdalla, Stacking sequence optimisation of variable stiffness laminates with manufacturing constraints,, vol. 125, p.596–604, (2015).

DOI: 10.1016/j.compstruct.2015.02.044

Google Scholar

[22] M. L. P. Kishore and R. K. Behera, Base Line Study for Determination of Effect of Stacking Sequence on Vibration Characteristics of Composite Propeller Blade,, Aquat. Procedia, vol. 4, no. Icwrcoe, p.458–465, (2015).

DOI: 10.1016/j.aqpro.2015.02.060

Google Scholar

[23] M. A. Caminero, G. P. Rodriguez, and V. Muoz, Effect of stacking sequence on Charpy impact and flexural damage behavior of composite laminates,, Compos. Struct., vol. 136, p.345–357, (2016).

DOI: 10.1016/j.compstruct.2015.10.019

Google Scholar

[24] J. Yang, B. Song, X. Zhong, and P. Jin, Optimal design of blended composite laminate structures using ply drop sequence,, Compos. Struct., vol. 135, p.30–37, (2016).

DOI: 10.1016/j.compstruct.2015.08.101

Google Scholar

[25] Y. Shi and C. Soutis, Modelling transverse matrix cracking and splitting of cross-ply composite laminates under four point bending,, Theor. Appl. Fract. Mech., vol. 83, p.73–81, (2015).

DOI: 10.1016/j.tafmec.2015.11.006

Google Scholar

[26] C. Baker, G. N. Morscher, V. V. Pujar, and J. R. Lemanski, Transverse cracking in carbon fiber reinforced polymer composites: Modal acoustic emission and peak frequency analysis,, Compos. Sci. Technol., vol. 116, p.26–32, (2015).

DOI: 10.1016/j.compscitech.2015.05.005

Google Scholar

[27] L. Longbiao, Modeling cyclic fatigue hysteresis loops of 2D woven ceramic-matrix composite at elevated temperatures in air considering multiple matrix cracking modes,, Theor. Appl. Fract. Mech., (2016).

DOI: 10.1016/j.tafmec.2016.03.010

Google Scholar

[28] M. J. M. Fikry, S. Ogihara, and V. Vinogradov, The effect of matrix cracking on mechanical properties in FRP laminates,, Mech. Adv. Mater. Mod. Process., vol. 4, no. 1, p.3, (2018).

DOI: 10.1186/s40759-018-0036-6

Google Scholar

[29] A. Farrokhabadi, M. Bahrami, and R. Babaei, Predicting the matrix cracking formation in symmetric composite laminates subjected to bending loads,, Compos. Struct., vol. 223, no. November 2018, p.110945, (2019).

DOI: 10.1016/j.compstruct.2019.110945

Google Scholar