[1]
W.Q. Cao, J.W. Xiong, J.P. Sun, Dielectric behavior of Nb-doped Ba(ZrxTi1-x)O3, Mater. Chem. Phys., Vol. 106 (2007) 338-342.
DOI: 10.1016/j.matchemphys.2007.06.017
Google Scholar
[2]
X.G. Tang, J. Wang, X.X. Wang, H.L.W. Chan, Effects of grain size on the dielectric properties and tunabilities of sol–gel derived Ba(Zr0.2Ti0.8)O3 ceramics, Solid State Commun., Vol. 131 (2004) 163-168.
DOI: 10.1016/j.ssc.2004.05.016
Google Scholar
[3]
Y.L. Wang, L.T. Li, J.Q. Qi, Z.L. Gui, Ferroelectric characteristics of ytterbium-doped barium zirconium titanate ceramics, Ceram. Int., Vol. 28 (2002) 657-661.
DOI: 10.1016/s0272-8842(02)00023-8
Google Scholar
[4]
P. Zheng, J.L. Zhang, H.B. Qin, K.X. Song, J. Wu, Z.H. Ying, L. Zheng, J.X. Deng, MnO2-modified Ba(Ti,Zr)O3 ceramics with high Qm and good thermal stability, J. Electron. Mater., Vol. 42 (2013) 1154-1157.
DOI: 10.1007/s11664-013-2543-x
Google Scholar
[5]
M. Tanmoy, R. Guo, A.S. Bhalla, Structure–property phase diagram of BaZrxTi1-xO3 system, J. Am. Ceram. Soc., Vol. 91 (2008) 1769-1780.
Google Scholar
[6]
F. Mouraa, A.Z. Simoes, B.D. Stojanovic, M.A. Zaghete, E. Longoa, J.A. Varela, Dielectric and ferroelectric characteristics of barium zirconate titanate ceramics prepared from mixed oxide method, J. Alloys Compd., Vol. 462 (2008) 129-134.
DOI: 10.1016/j.jallcom.2007.07.077
Google Scholar
[7]
W. Li, Z.J. Xu, R.Q. Chu, P. Fu, G.Z. Zang, Dielectric and piezoelectric properties of Ba(ZrxTi1-x)O3 lead-free ceramics, Braz. J. Phys., Vol. 40 (2010) 353-356.
DOI: 10.1590/s0103-97332010000300018
Google Scholar
[8]
N. Nanakorn, P. Jalupoom, N.Vaneesorn, A.Thanaboonsombut, Dielectric and ferroelectric properties of Ba(ZrxTi1-x)O3 ceramics, Ceram. Int., Vol. 34 (2008) 779-782.
DOI: 10.1016/j.ceramint.2007.09.024
Google Scholar
[9]
S.J. Kuang, X.G. Tang, L.Y. Li, Y.P. Jiang, Q.X. Liu, Influence of Zr dopant on the dielectric properties and Curie temperatures of Ba(ZrxTi1-x)O3 (0 £ x £ 0.12) ceramics, Scr. Mater., Vol. 61 (2009) 68-71.
DOI: 10.1016/j.scriptamat.2009.03.016
Google Scholar
[10]
D. Liang, X. Zhun, J. Zhu, J. Zhu, D. Xiao, Effects of CuO addition on the structure and electrical properties of low temperature sintered Ba(Zr,Ti)O3 lead-free piezoelectric ceramics, Ceram. Int., Vol. 40 (2014) 2585-2592.
DOI: 10.1016/j.ceramint.2013.10.084
Google Scholar
[11]
M.N. Rahaman, Ceramic Processing and Sintering (2nd edition), Marcel Dekker, 0-82470-988-8 York, USA. (2003).
Google Scholar
[12]
Powder Diffraction File, Card No. 06-0399, Joint Committee for Powder Diffraction Standards (JCPDS) PDF-4, International Centre for Diffraction Data (ICDD) (2000).
DOI: 10.1017/s0885715600016377
Google Scholar
[13]
N. Binhayeeniyi, P. Sukvisut, C. Thanachayanont, S. Muensit, Physical and electromechanical properties of barium zirconium titanate synthesized at low-sintering temperature, Mater. Lett., Vol. 64 (2010) 305-308.
DOI: 10.1016/j.matlet.2009.10.069
Google Scholar
[14]
P. Zheng, K.X. Song, H.B. Qin, L. Zheng, L.M. Zheng, Piezoelectric activities and domain patterns of orthorhombic Ba(Zr,Ti)O3 ceramics, Curr. Appl. Phys., Vol. 13 (2013) 1064-1068.
DOI: 10.1016/j.cap.2013.02.020
Google Scholar
[15]
C.-S. Chou, C.-L. Liu, C.-M. Hsiung, R.-Y. Yang, Preparation and characterization of the lead-free piezoelectric ceramic of Bi0.5Na0.5TiO3 doped with CuO, Powder Technol., Vol. 210 (2011) 212-219.
DOI: 10.1016/j.powtec.2011.03.019
Google Scholar
[16]
W. Jo, J.-B. Ollagnier, J.-L. Park, E.-M. Anton, O.-J. Kwon, C. Park, H.-H. Seo ,J.-S. Lee, E. Erdemd, R.-A. Eichel, J. Rödel, CuO as a sintering additive for (Bi1/2Na1/2)TiO3-BaTiO3-(K0.5Na0.5)NbO3 lead-free piezoceramics, J. Eur. Ceram. Soc., Vol. 31 (2011) 2107-2117.
DOI: 10.1016/j.jeurceramsoc.2011.05.008
Google Scholar
[17]
H.-Y. Park, J.-Y. Choi, M.-K. Choi, K.-H. Cho, S. Nahmw, Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics, J. Am. Ceram. Soc., Vol. 91 (2008) 2374-2377.
DOI: 10.1111/j.1551-2916.2008.02408.x
Google Scholar
[18]
F. Azough, M. Wegrzyn, R. Freer, S. Sharma, D. Hall, Microstructure and piezoelectric properties of CuO added (K,Na,Li)NbO3 lead-free piezoelectric ceramics, J. Eur. Ceram. Soc., Vol. 31 (2011) 569-576.
DOI: 10.1016/j.jeurceramsoc.2010.10.033
Google Scholar
[19]
H.-Y. Park, C.-W. Ahn, K.-H. Cho, S. Nahmw, Low-temperature sintering and piezoelectric properties of CuO-added 0.95(Na0.5K0.5)NbO3-0.05BaTiO3 ceramics, J. Am. Ceram. Soc., Vol. 90 (2007) 4066-4069.
Google Scholar
[20]
S. Ramesh, K.L. Aw, C.H. Ting, C.Y. Tan, I. Sopyan, W.D. Teng, Effect of copper oxide on the sintering of alumina ceramics, Adv. Mater. Res., Vol. 47-50 (2008) 801-804.
DOI: 10.4028/www.scientific.net/amr.47-50.801
Google Scholar
[21]
C-F. Lee, C-F. Wu, J-H. Jean, Effects of CuO on constrained sintering of a polycrystalline TiO2 ceramics, J. Am. Ceram. Soc., Vol. 102 (2019) 158–166.
DOI: 10.1111/jace.15897
Google Scholar
[22]
V.A. Chaudhari, G.K. Bichile, Synthesis, structural, and electrical properties of pure PbTiO3 ferroelectric ceramics, Smart Materials Research Article ID 147524 (2013) 9 pages.
DOI: 10.1155/2013/147524
Google Scholar
[23]
H.I. Hsiang, C.S. Hsi, C.C. Huang, S.L. Fu, Sintering behavior and dielectric properties of BaTiO3 ceramics with glass addition for internal capacitor of LTCC, J. Alloy. Compd., Vol. 459 (2008) 307-310.
DOI: 10.1016/j.jallcom.2007.04.218
Google Scholar
[24]
S. Pattipaka, P. Mahesh, D. Pamu, Structural and dielectric properties of lead free Bi0.5Na0.5TiO3 ceramics, AIP Conference Proceedings 1728 (2016) 10.1063/1.4946403.
DOI: 10.1063/1.4946403
Google Scholar