Influence of CuO Additive on Density and Dielectric Properties of Ba(Zr0.05Ti0.95)O3 Ceramics Prepared by Molten Salt Method

Article Preview

Abstract:

In this research, the Ba(Zr0.05Ti0.95)O3 powders were prepared by molten salt method. The powders were calcined at 600-1100°C for 3 h with heating rate of 5°C/min. The BZT powders were synthesized by molten salt method to reduce the calcination temperature by up to 300°C. The sintering procedure was carried out at 1250°C for 2 h with a heating/cooling rate of 5°C/min. Phase formation and microstructure were examined by XRD and SEM, respectively. The influence of the CuO additive on density and dielectric properties were investigated. The density of the sintered samples was measured by Archimedes method with distilled water as the fluid medium. Dielectric properties were examined by LCR meter. The BZT+2.0 mol% CuO ceramic sintered at 1250°C showed the highest density of 5.76 g/cm3, and the room temperature dielectric constant and dielectric loss at 1 kHz were 2687 and 0.01, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 302)

Pages:

115-121

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.Q. Cao, J.W. Xiong, J.P. Sun, Dielectric behavior of Nb-doped Ba(ZrxTi1-x)O3, Mater. Chem. Phys., Vol. 106 (2007) 338-342.

DOI: 10.1016/j.matchemphys.2007.06.017

Google Scholar

[2] X.G. Tang, J. Wang, X.X. Wang, H.L.W. Chan, Effects of grain size on the dielectric properties and tunabilities of sol–gel derived Ba(Zr0.2Ti0.8)O3 ceramics, Solid State Commun., Vol. 131 (2004) 163-168.

DOI: 10.1016/j.ssc.2004.05.016

Google Scholar

[3] Y.L. Wang, L.T. Li, J.Q. Qi, Z.L. Gui, Ferroelectric characteristics of ytterbium-doped barium zirconium titanate ceramics, Ceram. Int., Vol. 28 (2002) 657-661.

DOI: 10.1016/s0272-8842(02)00023-8

Google Scholar

[4] P. Zheng, J.L. Zhang, H.B. Qin, K.X. Song, J. Wu, Z.H. Ying, L. Zheng, J.X. Deng, MnO2-modified Ba(Ti,Zr)O3 ceramics with high Qm and good thermal stability, J. Electron. Mater., Vol. 42 (2013) 1154-1157.

DOI: 10.1007/s11664-013-2543-x

Google Scholar

[5] M. Tanmoy, R. Guo, A.S. Bhalla, Structure–property phase diagram of BaZrxTi1-xO3 system, J. Am. Ceram. Soc., Vol. 91 (2008) 1769-1780.

Google Scholar

[6] F. Mouraa, A.Z. Simoes, B.D. Stojanovic, M.A. Zaghete, E. Longoa, J.A. Varela, Dielectric and ferroelectric characteristics of barium zirconate titanate ceramics prepared from mixed oxide method, J. Alloys Compd., Vol. 462 (2008) 129-134.

DOI: 10.1016/j.jallcom.2007.07.077

Google Scholar

[7] W. Li, Z.J. Xu, R.Q. Chu, P. Fu, G.Z. Zang, Dielectric and piezoelectric properties of Ba(ZrxTi1-x)O3 lead-free ceramics, Braz. J. Phys., Vol. 40 (2010) 353-356.

DOI: 10.1590/s0103-97332010000300018

Google Scholar

[8] N. Nanakorn, P. Jalupoom, N.Vaneesorn, A.Thanaboonsombut, Dielectric and ferroelectric properties of Ba(ZrxTi1-x)O3 ceramics, Ceram. Int., Vol. 34 (2008) 779-782.

DOI: 10.1016/j.ceramint.2007.09.024

Google Scholar

[9] S.J. Kuang, X.G. Tang, L.Y. Li, Y.P. Jiang, Q.X. Liu, Influence of Zr dopant on the dielectric properties and Curie temperatures of Ba(ZrxTi1-x)O3 (0 £ x £ 0.12) ceramics, Scr. Mater., Vol. 61 (2009) 68-71.

DOI: 10.1016/j.scriptamat.2009.03.016

Google Scholar

[10] D. Liang, X. Zhun, J. Zhu, J. Zhu, D. Xiao, Effects of CuO addition on the structure and electrical properties of low temperature sintered Ba(Zr,Ti)O3 lead-free piezoelectric ceramics, Ceram. Int., Vol. 40 (2014) 2585-2592.

DOI: 10.1016/j.ceramint.2013.10.084

Google Scholar

[11] M.N. Rahaman, Ceramic Processing and Sintering (2nd edition), Marcel Dekker, 0-82470-988-8 York, USA. (2003).

Google Scholar

[12] Powder Diffraction File, Card No. 06-0399, Joint Committee for Powder Diffraction Standards (JCPDS) PDF-4, International Centre for Diffraction Data (ICDD) (2000).

DOI: 10.1017/s0885715600016377

Google Scholar

[13] N. Binhayeeniyi, P. Sukvisut, C. Thanachayanont, S. Muensit, Physical and electromechanical properties of barium zirconium titanate synthesized at low-sintering temperature, Mater. Lett., Vol. 64 (2010) 305-308.

DOI: 10.1016/j.matlet.2009.10.069

Google Scholar

[14] P. Zheng, K.X. Song, H.B. Qin, L. Zheng, L.M. Zheng, Piezoelectric activities and domain patterns of orthorhombic Ba(Zr,Ti)O3 ceramics, Curr. Appl. Phys., Vol. 13 (2013) 1064-1068.

DOI: 10.1016/j.cap.2013.02.020

Google Scholar

[15] C.-S. Chou, C.-L. Liu, C.-M. Hsiung, R.-Y. Yang, Preparation and characterization of the lead-free piezoelectric ceramic of Bi0.5Na0.5TiO3 doped with CuO, Powder Technol., Vol. 210 (2011) 212-219.

DOI: 10.1016/j.powtec.2011.03.019

Google Scholar

[16] W. Jo, J.-B. Ollagnier, J.-L. Park, E.-M. Anton, O.-J. Kwon, C. Park, H.-H. Seo ,J.-S. Lee, E. Erdemd, R.-A. Eichel, J. Rödel, CuO as a sintering additive for (Bi1/2Na1/2)TiO3-BaTiO3-(K0.5Na0.5)NbO3 lead-free piezoceramics, J. Eur. Ceram. Soc., Vol. 31 (2011) 2107-2117.

DOI: 10.1016/j.jeurceramsoc.2011.05.008

Google Scholar

[17] H.-Y. Park, J.-Y. Choi, M.-K. Choi, K.-H. Cho, S. Nahmw, Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics, J. Am. Ceram. Soc., Vol. 91 (2008) 2374-2377.

DOI: 10.1111/j.1551-2916.2008.02408.x

Google Scholar

[18] F. Azough, M. Wegrzyn, R. Freer, S. Sharma, D. Hall, Microstructure and piezoelectric properties of CuO added (K,Na,Li)NbO3 lead-free piezoelectric ceramics, J. Eur. Ceram. Soc., Vol. 31 (2011) 569-576.

DOI: 10.1016/j.jeurceramsoc.2010.10.033

Google Scholar

[19] H.-Y. Park, C.-W. Ahn, K.-H. Cho, S. Nahmw, Low-temperature sintering and piezoelectric properties of CuO-added 0.95(Na0.5K0.5)NbO3-0.05BaTiO3 ceramics, J. Am. Ceram. Soc., Vol. 90 (2007) 4066-4069.

Google Scholar

[20] S. Ramesh, K.L. Aw, C.H. Ting, C.Y. Tan, I. Sopyan, W.D. Teng, Effect of copper oxide on the sintering of alumina ceramics, Adv. Mater. Res., Vol. 47-50 (2008) 801-804.

DOI: 10.4028/www.scientific.net/amr.47-50.801

Google Scholar

[21] C-F. Lee, C-F. Wu, J-H. Jean, Effects of CuO on constrained sintering of a polycrystalline TiO2 ceramics, J. Am. Ceram. Soc., Vol. 102 (2019) 158–166.

DOI: 10.1111/jace.15897

Google Scholar

[22] V.A. Chaudhari, G.K. Bichile, Synthesis, structural, and electrical properties of pure PbTiO3 ferroelectric ceramics, Smart Materials Research Article ID 147524 (2013) 9 pages.

DOI: 10.1155/2013/147524

Google Scholar

[23] H.I. Hsiang, C.S. Hsi, C.C. Huang, S.L. Fu, Sintering behavior and dielectric properties of BaTiO3 ceramics with glass addition for internal capacitor of LTCC, J. Alloy. Compd., Vol. 459 (2008) 307-310.

DOI: 10.1016/j.jallcom.2007.04.218

Google Scholar

[24] S. Pattipaka, P. Mahesh, D. Pamu, Structural and dielectric properties of lead free Bi0.5Na0.5TiO3 ceramics, AIP Conference Proceedings 1728 (2016) 10.1063/1.4946403.

DOI: 10.1063/1.4946403

Google Scholar