[1]
Xiong, J.B. and Q. Mahmood, Adsorptive removal of phosphate from aqueous media by peat. Desalin, 2010. 259(1-3): pp.59-64.
DOI: 10.1016/j.desal.2010.04.035
Google Scholar
[2]
Abat, M., et al., Adsorption and desorption of copper and zinc in tropical peat soils of Sarawak, Malaysia. Geo, 2012. 175-176: pp.58-63.
DOI: 10.1016/j.geoderma.2012.01.024
Google Scholar
[3]
Chieng, H.I., L.B.L. Lim, and N. Priyantha, Sorption characteristics of peat from Brunei Darussalam for the removal of rhodamine B dye from aqueous solution: adsorption isotherms, thermodynamics, kinetics and regeneration studies. Desalin Wat Treat, 2015. 55(3): pp.664-677.
DOI: 10.1080/19443994.2014.919609
Google Scholar
[4]
Zehra, T., et al., Sorption characteristics of peat of Brunei Darussalam V: removal of Congo red dye from aqueous solution by peat. Desalin Wat Treat, 2015. 54(9): pp.2592-2600.
DOI: 10.1080/19443994.2014.899929
Google Scholar
[5]
Brown, P.A., S.A. Gill, and S.J. Allen, Metal removal from wastewater using peat. Wat Res, 2000. 34(16): pp.3907-3916.
DOI: 10.1016/s0043-1354(00)00152-4
Google Scholar
[6]
Liu, Z.-r., et al., Competitive adsorption of heavy metal ions on peat. J China Univ Min Technol, 2008. 18(2): pp.255-260.
Google Scholar
[7]
Dawodu, F.A. and K.G. Akpomie, Simultaneous adsorption of Ni(II) and Mn(II) ions from aqueous solution unto a Nigerian kaolinite clay. J Mat Res Technol, 2014. 3(2): pp.129-141.
DOI: 10.1016/j.jmrt.2014.03.002
Google Scholar
[8]
Belviso, C., et al., Removal of Mn from aqueous solution using fly ash and its hydrothermal synthetic zeolite. J Environ Manag, 2014. 137: pp.16-22.
DOI: 10.1016/j.jenvman.2014.01.040
Google Scholar
[9]
Inglezakis, V., et al., Removal of iron and manganese from underground water by use of natural minerals in batch mode treatment. Desalin Wat Treat, 2010. 18: pp.341-346.
DOI: 10.5004/dwt.2010.1102
Google Scholar
[10]
Bartczak, P., et al., Removal of nickel(II) and lead(II) ions from aqueous solution using peat as a low-cost adsorbent: A kinetic and equilibrium study. Arab J Chem, 2018. 11(8): pp.1209-1222.
DOI: 10.1016/j.arabjc.2015.07.018
Google Scholar
[11]
Hei Ing, C., et al., Sorption characteristics of peat of Brunei Darussalam IV: equilibrium, thermodynamics and kinetics of adsorption of methylene blue and malachite green dyes from aqueous solution. Environ Earth Sci, 2014. 72(7): pp.2263-2277.
DOI: 10.1007/s12665-014-3135-7
Google Scholar
[12]
Khadiran, T., et al., Textural and Chemical Properties of Activated Carbon Prepared from Tropical Peat Soil by Chemical Activation Method. Biores, 2014. 10(1): p.22.
DOI: 10.15376/biores.10.1.986-1007
Google Scholar
[13]
Lim, L., et al., Sorption characteristics of peat of Brunei Darussalam I: characterization of peat and adsorption equilibrium studies of methylene blue-peat interactions. Cey. J. Sci., 2013. 17: pp.41-51.
DOI: 10.1007/s12665-014-3135-7
Google Scholar
[14]
Batista, A.P., et al., Biosorption of Cr(III) using in natura and chemically treated tropical peats. J Hazard Mat, 2008. 163: pp.517-23.
DOI: 10.1016/j.jhazmat.2008.06.129
Google Scholar
[15]
Yuliani, G., G. Garnier, and A.L. Chaffee, Utilization of raw and dried Victorian brown coal in the adsorption of model dyes from solution. J Wat Process Eng, 2017. 15: pp.43-48.
DOI: 10.1016/j.jwpe.2016.06.004
Google Scholar
[16]
Yuliani, G., I. Noviyana, and A. Setiabudi, Enrichment of Indonesian Low Rank Coal's Surface (SOCs) using hidrogen peroxides and its adsortive properties. Adv Mat Res, 2014. 869: p.159.
DOI: 10.4028/www.scientific.net/amr.896.159
Google Scholar
[17]
Mahajan, O.P., CO2 surface area of coals: The 25-year paradox. Carbon, 1991. 29(6): pp.735-742.
DOI: 10.1016/0008-6223(91)90010-g
Google Scholar
[18]
Woskoboenko, F., W.O. Stacy, and D. Raisbeck, Physical structure and properties of brown coal, in The science of Victorian brown coal: structure, properties and consequences for utilization, R.A. Durie, Editor. 1991, Butterworth-Heinemann: Oxford. pp.152-246.
DOI: 10.1016/b978-0-7506-0420-8.50009-9
Google Scholar
[19]
Kan, C.-C., et al., Adsorption of Mn2+ from aqueous solution using Fe and Mn oxide-coated sand. J Enviro Sci, 2013. 25(7): pp.1483-1491.
DOI: 10.1016/s1001-0742(12)60188-0
Google Scholar
[20]
Moreno-Piraján, J., G. Rigoberto, and G. Liliana, Removal of Mn, Fe, Ni and Cu Ions from Wastewater Using Cow Bone Charcoal. Materials, 2010. 3: pp.452-466.
DOI: 10.3390/ma3010452
Google Scholar
[21]
Taba, P., P. Budi, and A. Y Puspitasari, Adsorption of heavy metals on amine-functionalized MCM-48. IOP Conf Ser: Mat Sci Eng, 2017. 188: pp.1-9.
DOI: 10.1088/1757-899x/188/1/012015
Google Scholar