[1]
Kutt, L., Lehtonen, M., Automotive waste heat harvesting for electricity generation using thermoelectric systems an overview, IEEE (2015) 55–62.
DOI: 10.1109/powereng.2015.7266296
Google Scholar
[2]
Champier, D., Thermoelectric generators: A review of applications. Energy Convers. Manag. 140 (2017) 167–181.
Google Scholar
[3]
Liu, W., Hu, J., Zhang, S., Deng, M., Han, C.-G., Liu, Y., New trends, strategies and opportunities in thermoelectric materials: A perspective. Mater. Today Phys. 1 (2017) 50–60.
DOI: 10.1016/j.mtphys.2017.06.001
Google Scholar
[4]
Li, J.-F., Liu, W.-S., Zhao, L.-D., Zhou, M., High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2 (2010) 152–158.
DOI: 10.1038/asiamat.2010.138
Google Scholar
[5]
Rogl, G., Rogl, P., Skutterudites, a most promising group of thermoelectric materials. Curr. Opin. Green Sustain. Chem. 4 (2017) 50–57.
DOI: 10.1016/j.cogsc.2017.02.006
Google Scholar
[6]
Rogl, G., Rogl, P., How nanoparticles can change the figure of merit, ZT, and mechanical properties of skutterudites. Mater. Today Phys. 3 (2017) 48–69.
DOI: 10.1016/j.mtphys.2017.12.004
Google Scholar
[7]
Itoh, T., Tachikawa, M., Thermoelectric properties of carbon nanotubes added n-type CoSb3 compound. MRS Proc. 1314 (2011).
DOI: 10.1557/opl.2011.515
Google Scholar
[8]
Shi, X., Yang, J., Salvador, J.R., Chi, M., Cho, J.Y., Wang, H., Bai, S., Yang, J., Zhang, W., Chen, L., Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133 (2011) 7837–7846.
DOI: 10.1021/ja111199y
Google Scholar
[9]
Feng, B., Xie, J., Cao, G., Zhu, T., Zhao, X., Enhanced thermoelectric properties of p-type CoSb3/graphene nanocomposite. J. Mater. Chem. A 1 (2013) 13111.
DOI: 10.1039/c3ta13202a
Google Scholar
[10]
Rull-Bravo, M., Moure, A., Fernández, J.F., Martín-González, M., Skutterudites as thermoelectric materials: revisited. RSC Adv. 5 (2015) 41653–41667.
DOI: 10.1039/c5ra03942h
Google Scholar
[11]
Liu, W.-S., Zhang, B.-P., Li, J.-F., Zhang, H.-L., Zhao, L.-D., Enhanced thermoelectric properties in CoSb3-xTex alloys prepared by mechanical alloying and spark plasma sintering. J. Appl. Phys. 102 (2007) 103717 1-7.
DOI: 10.1063/1.2815671
Google Scholar
[12]
Li, X.Y., Chen, L.D., Fan, J.F., Zhang, W.B., Kawahara, T., Hirai, T., Thermoelectric properties of Te-doped CoSb3 by spark plasma sintering. J. Appl. Phys. 98 (2005) 083702 1-6.
DOI: 10.1063/1.2067704
Google Scholar
[13]
Hui, S., Nielsen, M.D., Homer, M.R., Medlin, D.L., Tobola, J., Salvador, J.R., Heremans, J.P., Pipe, K.P., Uher, C., Influence of substituting Sn for Sb on the thermoelectric transport properties of CoSb3-based skutterudites. J. Appl. Phys. 115 (2014) 103704.
DOI: 10.1063/1.4867609
Google Scholar
[14]
Wan, C., Wang, Y., Wang, N., Norimatsu, W., Kusunoki, M., Koumoto, K., Development of novel thermoelectric materials by reduction of lattice thermal conductivity. Sci. Technol. Adv. Mater. 11 (2010) 044306.
DOI: 10.1088/1468-6996/11/4/044306
Google Scholar
[15]
Zhou, X., Yan, Y., Lu, X., Zhu, H., Han, X., Chen, G., Ren, Z., Routes for high-performance thermoelectric materials: submitted to Mater. Today. (2018).
DOI: 10.1016/j.mattod.2018.03.039
Google Scholar
[16]
Nakamura, Y., Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity. Sci. Technol. Adv. Mater. 19 (2018) 31–43.
DOI: 10.1080/14686996.2017.1413918
Google Scholar
[17]
Liang, T., Su, X., Yan, Y., Zheng, G., She, X., You, Y., Uher, C., Kanatzidis, M.G., Tang, X., Panoscopic approach for high-performance Te-doped skutterudite. NPG Asia Mater. 9 (2017) e352.
DOI: 10.1038/am.2017.1
Google Scholar
[18]
Wei, K., Skutterudite Derivatives: A Fundamental Investigation with Potential for Thermoelectric Applications. Grad. Theses Diss. (2014).
Google Scholar
[19]
Tafti, M.Y., Saleemi, M., Toprak, M.S., Johnsson, M., Jacquot, A., Jägle, M., Muhammed, M., Fabrication and characterization of nanostructured thermoelectric FexCo1-xSb3. Open Chem. 13 (2014) 629–635.
DOI: 10.1515/chem-2015-0074
Google Scholar
[20]
Kim, S.-H., Kim, M.C., Kim, M.-S., Ahn, J.P., Moon, K.-S., Koo, S.M., Tafti, M.Y., Park, J.-S., Toprak, M.S., Lee, B.-H., Kim, D.K., Nanophase oxalate precursors of thermoelectric CoSb3 by controlled coprecipitation predicted by thermodynamic modeling. Adv. Powder Technol. 27 (2016) 773–778.
DOI: 10.1016/j.apt.2016.03.006
Google Scholar
[21]
Khan, A., Saleemi, M., Johnsson, M., Han, L., Nong, N.V., Muhammed, M., Toprak, M.S., Fabrication, spark plasma consolidation, and thermoelectric evaluation of nanostructured CoSb3. J. Alloys Compd. 612 (2014) 293–300.
DOI: 10.1016/j.jallcom.2014.05.119
Google Scholar
[22]
Li, Y., Li, C., Wang, B., Li, W., Che, P., A comparative study on the thermoelectric properties of CoSb3 prepared by hydrothermal and solvothermal route. J. Alloys Compd. 772 (2019) 770–774.
DOI: 10.1016/j.jallcom.2018.09.114
Google Scholar
[23]
Li, J.Q., Zhang, Z.P., Luo, R.M., Ao, W.Q., Liu, F.S., Solvothermal synthesis of nano-sized skutterudite Co1− xNixSb3 powders. Powder Diffr. 28 (2013) S17–S21.
DOI: 10.1017/s0885715613000213
Google Scholar
[24]
Lu, P., Shen, Z., Hu, X., Effects of solvents and Sb sources on the morphologies of LaFe3CoSb12 nanopowders made by the hydro/solvo thermal method. J. Mater. Res. 24 (2009) 2873–2879.
DOI: 10.1557/jmr.2009.0363
Google Scholar
[25]
Mi, J.L., Zhao, X.B., Zhu, T.J., Tu, J.P., Nanosized La filled CoSb3 prepared by a solvothermal-annealing method. Mater. Lett. 62 (2008) 2363–2365.
DOI: 10.1016/j.matlet.2007.11.088
Google Scholar
[26]
Qin, Z., Cai, K.F., Chen, S., Du, Y., Preparation and electrical transport properties of In filled and Te-doped CoSb3 skutterudite. J. Mater. Sci. Mater. Electron. 24 (2013) 4142–4147.
DOI: 10.1007/s10854-013-1373-1
Google Scholar
[27]
Liu, H., Wang, J., Hu, X., Li, L., Gu, F., Zhao, S., Gu, M., Boughton, R.I., Jiang, M., Preparation of filled skutterudite nanowire by a hydrothermal method. J. Alloys Compd. 334 (2002) 313–316.
DOI: 10.1016/s0925-8388(01)01794-7
Google Scholar
[28]
Ji, X., Tritt, T.M., Zhao, X., Kolis, J.W., Solution chemical synthesis of nanostructured thermoelectric materials, Journal of the South Carolina Academy of Science. 6 (2007) 1-9.
Google Scholar
[29]
Kadel, K., Li, W., Solvothermal synthesis and structural characterization of unfilled and Yb-filled cobalt antimony skutterudite. Cryst. Res. Technol. 49 (2014) 135–141.
DOI: 10.1002/crat.201300330
Google Scholar
[30]
Xie, J., Zhao, X., Mi, J., Cao, G., Tu, J., Solvothermal synthesis of nanosized CoSb3 skutterudite. J. Zhejiang Univ. A 5 (2004) 1504–1508.
DOI: 10.1631/jzus.2004.1504
Google Scholar
[31]
Li, J.Q., Feng, X.W., Sun, W.A., Ao, W.Q., Liu, F.S., Du, Y., Solvothermal synthesis of nano-sized skutterudite Co4−xFexSb12 powders. Mater. Chem. Phys. 112 (2008) 57–62.
DOI: 10.1016/j.matchemphys.2008.05.017
Google Scholar
[32]
Mi, J.L., Zhao, X.B., Zhu, T.J., Tu, J.P., Cao, G.S., Solvothermal synthesis of nanostructured ternary skutterudite Fe0.5Ni0.5Sb3. J. Alloys Compd. 399 (2005) 260–263.
DOI: 10.1016/j.jallcom.2005.03.013
Google Scholar
[33]
Kumari, L., Li, W., Huang, J.Y., Provencio, P.P., Solvothermal synthesis, structure and optical property of nanosized CoSb3 skutterudite. Nanoscale Res. Lett. 5 (2010) 1698–1705.
DOI: 10.1007/s11671-010-9700-4
Google Scholar
[34]
Lu, P.-X., Wu, F., Han, H.-L., Wang, Q., Shen, Z.-G., Hu, X., Thermoelectric properties of rare earths filled CoSb3 based nanostructure skutterudite. J. Alloys Compd. 505 (2010) 255–258.
DOI: 10.1016/j.jallcom.2010.06.040
Google Scholar
[35]
Chu, Y., Tang, X., Zhao, W., Zhang, Q., Synthesis and growth of rodlike and spherical nanostructures CoSb3 via ethanol sol–gel method. Cryst. Growth Des. 8 (2008) 208–210.
DOI: 10.1021/cg060924j
Google Scholar
[36]
Zhu, Y., Shen, H., Guan, H., Microwave-assisted synthesis and thermoelelectric properties of CoSb3 compounds. J. Mater. Sci. Mater. Electron. 23 (2012) 2210–2215.
DOI: 10.1007/s10854-012-0754-1
Google Scholar
[37]
Yang, L., Hng, H.H., Cheng, H., Sun, T., Ma, J., Synthesis of CoSb3 by a modified polyol process. Mater. Lett. 62 (2008) 2483–2485.
DOI: 10.1016/j.matlet.2007.12.054
Google Scholar
[38]
Itoh, T., Isogai, K., Syntheses of Ni-doped and Fe-doped CoSb3 Thermoelectric Nanoparticles through Modified Polyol Process. MRS Proc. 1166 (2009) 1166-N03-16.
DOI: 10.1557/proc-1166-n03-16
Google Scholar
[39]
Yang, J., Hao, Q., Wang, H., Lan, Y.C., He, Q.Y., Minnich, A., Wang, D.Z., Harriman, J.A., Varki, V.M., Dresselhaus, M.S., Chen, G., Ren, Z.F., Solubility study of Yb in n-type skutterudites YbxCo4Sb12 and their enhanced thermoelectric properties. Phys. Rev. B 80 (2009) 115329.
DOI: 10.1103/physrevb.80.115329
Google Scholar
[40]
Yang, J., Chen, Y., Zhu, W., Peng, J., Bao, S., Fan, X., Duan, X., Effect of La filling on thermoelectric properties of LaxCo3.6Ni0.4Sb12-filled skutterudite prepared by MA–HP method. J. Solid State Chem. 179 (2006) 212–216.
DOI: 10.1016/j.jssc.2005.10.029
Google Scholar
[41]
He, Q., Hao, Q., Wang, X., Yang, J., Lan, Y., Yan, X., Yu, B., Ma, Y., Poudel, B., Joshi, G., Wang, D., Chen, G., Ren, Z., Nanostructured thermoelectric skutterudite Co1-xNixSb3 alloys. J. Nanosci. Nanotechnol. 8 (2008) 4003–4006.
DOI: 10.1166/jnn.2008.469
Google Scholar
[42]
Rogl, G., Grytsiv, A., Yubuta, K., Puchegger, S., Bauer, E., Raju, C., Mallik, R.C., Rogl, P., In-doped multifilled n-type skutterudites with ZT = 1.8. Acta Mater. 95 (2015) 201–211.
DOI: 10.1016/j.actamat.2015.05.024
Google Scholar
[43]
Choi, M.K., Ur, S.C., Kwon, J.C., Cho, K.W., Kim, I.H., Lee, Y.G., Ryu, S.L., Mechanical alloying and thermoelectric properties of CoSb3 skutterudite. Mater. Sci. Forum 486–487 (2005) 642–645.
DOI: 10.4028/www.scientific.net/msf.486-487.642
Google Scholar
[44]
Peng, J., Liu, X., Fu, L., Xu, W., Liu, Q., Yang, J., Synthesis and thermoelectric properties of In0.2+xCo4Sb12+x composite. J. Alloys Compd. 521 (2012) 141–145.
DOI: 10.1016/j.jallcom.2012.01.093
Google Scholar
[45]
Lamberton, G.A., Bhattacharya, S., Littleton, R.T., Kaeser, M.A., Tedstrom, R.H., Tritt, T.M., Yang, J., Nolas, G.S., High figure of merit in Eu-filled CoSb3-based skutterudites. Appl. Phys. Lett. 80 (2002) 598–600.
DOI: 10.1063/1.1433911
Google Scholar
[46]
Pei, Y.Z., Yang, J., Chen, L.D., Zhang, W., Salvador, J.R., Yang, J., Improving thermoelectric performance of caged compounds through light-element filling. Appl. Phys. Lett. 95 (2009) 042101 1-3.
DOI: 10.1063/1.3182800
Google Scholar
[47]
Deng, L., Ma, H.A., Su, T.C., Yu, F.R., Tian, Y.J., Jiang, Y.P., Dong, N., Zheng, S.Z., Jia, X., Enhanced thermoelectric properties in Co4Sb12−xTex alloys prepared by HPHT. Mater. Lett. 63 (2009) 2139–2141.
DOI: 10.1016/j.matlet.2009.06.008
Google Scholar
[48]
Deng, L., Wang, L.B., Ni, J., Qin, J.M., Jia, X.P., Ma, H.A., Enhanced thermoelectric properties of Te-doped and In, Ba double-filled CoSb3 composites by high pressure technology. Mater. Lett. 217 (2018) 44–47.
DOI: 10.1016/j.matlet.2018.01.048
Google Scholar
[49]
Wang, L., Deng, L., Qin, J., Jia, X., Enhanced thermoelectric properties of double-filled CoSb3 via high-pressure regulating. Inorg. Chem. 57 (2018) 6762–6766.
DOI: 10.1021/acs.inorgchem.8b01110
Google Scholar
[50]
Li, H., Tang, X., Su, X., Zhang, Q., Uher, C., Nanostructured bulk YbxCo4Sb12 with high thermoelectric performance prepared by the rapid solidification method. J. Phys. D. Appl. Phys. 42 (2009) 145409.
DOI: 10.1088/0022-3727/42/14/145409
Google Scholar
[51]
Kim, I.-H., Park, K.-H., Ur, S.-C., Thermoelectric properties of Sn-doped CoSb3 prepared by encapsulated induction melting. J. Alloys Compd. 442 (2007) 351–354.
DOI: 10.1016/j.jallcom.2006.08.368
Google Scholar
[52]
Liu, W.-S., Zhang, B.-P., Zhao, L.-D., Li, J.-F., Improvement of thermoelectric performance of CoSb3−xTex skutterudite compounds by additional substitution of IVB-group elements for Sb. Chem. Mater. 20 (2008) 7526–7531.
DOI: 10.1021/cm802367f
Google Scholar
[53]
Su, X., Li, H., Wang, G., Chi, H., Zhou, X., Tang, X., Zhang, Q., Uher, C., Structure and transport properties of double-doped CoSb2.75Ge0.25– xTex ( x = 0.125–0.20) with in Situ Nanostructure. Chem. Mater. 23 (2011) 2948–2955.
DOI: 10.1021/cm200560s
Google Scholar
[54]
Ye, X., Chen, G., Duan, B., Zhai, P., Effect of Te–Se–S triple doping on the thermoelectric properties of CoSb3 skutterudites. J. Electron. Mater. 44 (2015) 1674–1678.
DOI: 10.1007/s11664-014-3512-8
Google Scholar
[55]
Mallik, R.C., Anbalagan, R., Rogl, G., Royanian, E., Heinrich, P., Bauer, E., Rogl, P., Suwas, S., Thermoelectric properties of Fe0.2Co3.8Sb12−xTex skutterudites. Acta Mater. 61 (2013) 6698–6711.
DOI: 10.1016/j.actamat.2013.07.032
Google Scholar