Application of Microwave Radiation in Modified Polyol Process for Synthesis Pure, Te-Doped, and Sn-Doped CoSb3 Thermoelectric Materials

Article Preview

Abstract:

Synthesis routes of CoSb3 need a long reaction time, especially at high temperature and-/or high pressure. Although the modified polyol process assisted with microwave radiation can be used to solve these problems, it used the excess amount of Sb ion. Therefore, this study aimed to solve this drawback by retarding the rate of reduction. The different microwave times (0, 1, and 3 min) were investigated to find out the shortest heating duration for preparing CoSb3 nanoparticles. Te-doped and Sn-doped CoSb3 were synthesized to investigate the benefit of this synthesis method for increasing the solubility limit of Te and Sn in the CoSb3 structure. The phase and microstructure of the synthesized products were characterized by using x-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results showed that the high crystalline phase of CoSb3 (JCPDS: 78-0977) without any metallic impurity phases product was successfully synthesized in 3 minutes for a heating time at normal pressure, non-excessive addition of Sb ion precursor, and low temperature. The XRD results of Te-doped and Sn-doped CoSb3 products exhibited poor crystalline phase and hard to exactly identify. In SEM and TEM results, the CoSb3 powder consisted of very tiny spherical-like particles around 10 nanometers attaching together even at different microwave time similar to Te-doped/Sn-doped samples.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 302)

Pages:

123-134

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kutt, L., Lehtonen, M., Automotive waste heat harvesting for electricity generation using thermoelectric systems an overview, IEEE (2015) 55–62.

DOI: 10.1109/powereng.2015.7266296

Google Scholar

[2] Champier, D., Thermoelectric generators: A review of applications. Energy Convers. Manag. 140 (2017) 167–181.

Google Scholar

[3] Liu, W., Hu, J., Zhang, S., Deng, M., Han, C.-G., Liu, Y., New trends, strategies and opportunities in thermoelectric materials: A perspective. Mater. Today Phys. 1 (2017) 50–60.

DOI: 10.1016/j.mtphys.2017.06.001

Google Scholar

[4] Li, J.-F., Liu, W.-S., Zhao, L.-D., Zhou, M., High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2 (2010) 152–158.

DOI: 10.1038/asiamat.2010.138

Google Scholar

[5] Rogl, G., Rogl, P., Skutterudites, a most promising group of thermoelectric materials. Curr. Opin. Green Sustain. Chem. 4 (2017) 50–57.

DOI: 10.1016/j.cogsc.2017.02.006

Google Scholar

[6] Rogl, G., Rogl, P., How nanoparticles can change the figure of merit, ZT, and mechanical properties of skutterudites. Mater. Today Phys. 3 (2017) 48–69.

DOI: 10.1016/j.mtphys.2017.12.004

Google Scholar

[7] Itoh, T., Tachikawa, M., Thermoelectric properties of carbon nanotubes added n-type CoSb3 compound. MRS Proc. 1314 (2011).

DOI: 10.1557/opl.2011.515

Google Scholar

[8] Shi, X., Yang, J., Salvador, J.R., Chi, M., Cho, J.Y., Wang, H., Bai, S., Yang, J., Zhang, W., Chen, L., Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133 (2011) 7837–7846.

DOI: 10.1021/ja111199y

Google Scholar

[9] Feng, B., Xie, J., Cao, G., Zhu, T., Zhao, X., Enhanced thermoelectric properties of p-type CoSb3/graphene nanocomposite. J. Mater. Chem. A 1 (2013) 13111.

DOI: 10.1039/c3ta13202a

Google Scholar

[10] Rull-Bravo, M., Moure, A., Fernández, J.F., Martín-González, M., Skutterudites as thermoelectric materials: revisited. RSC Adv. 5 (2015) 41653–41667.

DOI: 10.1039/c5ra03942h

Google Scholar

[11] Liu, W.-S., Zhang, B.-P., Li, J.-F., Zhang, H.-L., Zhao, L.-D., Enhanced thermoelectric properties in CoSb3-xTex alloys prepared by mechanical alloying and spark plasma sintering. J. Appl. Phys. 102 (2007) 103717 1-7.

DOI: 10.1063/1.2815671

Google Scholar

[12] Li, X.Y., Chen, L.D., Fan, J.F., Zhang, W.B., Kawahara, T., Hirai, T., Thermoelectric properties of Te-doped CoSb3 by spark plasma sintering. J. Appl. Phys. 98 (2005) 083702 1-6.

DOI: 10.1063/1.2067704

Google Scholar

[13] Hui, S., Nielsen, M.D., Homer, M.R., Medlin, D.L., Tobola, J., Salvador, J.R., Heremans, J.P., Pipe, K.P., Uher, C., Influence of substituting Sn for Sb on the thermoelectric transport properties of CoSb3-based skutterudites. J. Appl. Phys. 115 (2014) 103704.

DOI: 10.1063/1.4867609

Google Scholar

[14] Wan, C., Wang, Y., Wang, N., Norimatsu, W., Kusunoki, M., Koumoto, K., Development of novel thermoelectric materials by reduction of lattice thermal conductivity. Sci. Technol. Adv. Mater. 11 (2010) 044306.

DOI: 10.1088/1468-6996/11/4/044306

Google Scholar

[15] Zhou, X., Yan, Y., Lu, X., Zhu, H., Han, X., Chen, G., Ren, Z., Routes for high-performance thermoelectric materials: submitted to Mater. Today. (2018).

DOI: 10.1016/j.mattod.2018.03.039

Google Scholar

[16] Nakamura, Y., Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity. Sci. Technol. Adv. Mater. 19 (2018) 31–43.

DOI: 10.1080/14686996.2017.1413918

Google Scholar

[17] Liang, T., Su, X., Yan, Y., Zheng, G., She, X., You, Y., Uher, C., Kanatzidis, M.G., Tang, X., Panoscopic approach for high-performance Te-doped skutterudite. NPG Asia Mater. 9 (2017) e352.

DOI: 10.1038/am.2017.1

Google Scholar

[18] Wei, K., Skutterudite Derivatives: A Fundamental Investigation with Potential for Thermoelectric Applications. Grad. Theses Diss. (2014).

Google Scholar

[19] Tafti, M.Y., Saleemi, M., Toprak, M.S., Johnsson, M., Jacquot, A., Jägle, M., Muhammed, M., Fabrication and characterization of nanostructured thermoelectric FexCo1-xSb3. Open Chem. 13 (2014) 629–635.

DOI: 10.1515/chem-2015-0074

Google Scholar

[20] Kim, S.-H., Kim, M.C., Kim, M.-S., Ahn, J.P., Moon, K.-S., Koo, S.M., Tafti, M.Y., Park, J.-S., Toprak, M.S., Lee, B.-H., Kim, D.K., Nanophase oxalate precursors of thermoelectric CoSb3 by controlled coprecipitation predicted by thermodynamic modeling. Adv. Powder Technol. 27 (2016) 773–778.

DOI: 10.1016/j.apt.2016.03.006

Google Scholar

[21] Khan, A., Saleemi, M., Johnsson, M., Han, L., Nong, N.V., Muhammed, M., Toprak, M.S., Fabrication, spark plasma consolidation, and thermoelectric evaluation of nanostructured CoSb3. J. Alloys Compd. 612 (2014) 293–300.

DOI: 10.1016/j.jallcom.2014.05.119

Google Scholar

[22] Li, Y., Li, C., Wang, B., Li, W., Che, P., A comparative study on the thermoelectric properties of CoSb3 prepared by hydrothermal and solvothermal route. J. Alloys Compd. 772 (2019) 770–774.

DOI: 10.1016/j.jallcom.2018.09.114

Google Scholar

[23] Li, J.Q., Zhang, Z.P., Luo, R.M., Ao, W.Q., Liu, F.S., Solvothermal synthesis of nano-sized skutterudite Co1− xNixSb3 powders. Powder Diffr. 28 (2013) S17–S21.

DOI: 10.1017/s0885715613000213

Google Scholar

[24] Lu, P., Shen, Z., Hu, X., Effects of solvents and Sb sources on the morphologies of LaFe3CoSb12 nanopowders made by the hydro/solvo thermal method. J. Mater. Res. 24 (2009) 2873–2879.

DOI: 10.1557/jmr.2009.0363

Google Scholar

[25] Mi, J.L., Zhao, X.B., Zhu, T.J., Tu, J.P., Nanosized La filled CoSb3 prepared by a solvothermal-annealing method. Mater. Lett. 62 (2008) 2363–2365.

DOI: 10.1016/j.matlet.2007.11.088

Google Scholar

[26] Qin, Z., Cai, K.F., Chen, S., Du, Y., Preparation and electrical transport properties of In filled and Te-doped CoSb3 skutterudite. J. Mater. Sci. Mater. Electron. 24 (2013) 4142–4147.

DOI: 10.1007/s10854-013-1373-1

Google Scholar

[27] Liu, H., Wang, J., Hu, X., Li, L., Gu, F., Zhao, S., Gu, M., Boughton, R.I., Jiang, M., Preparation of filled skutterudite nanowire by a hydrothermal method. J. Alloys Compd. 334 (2002) 313–316.

DOI: 10.1016/s0925-8388(01)01794-7

Google Scholar

[28] Ji, X., Tritt, T.M., Zhao, X., Kolis, J.W., Solution chemical synthesis of nanostructured thermoelectric materials, Journal of the South Carolina Academy of Science. 6 (2007) 1-9.

Google Scholar

[29] Kadel, K., Li, W., Solvothermal synthesis and structural characterization of unfilled and Yb-filled cobalt antimony skutterudite. Cryst. Res. Technol. 49 (2014) 135–141.

DOI: 10.1002/crat.201300330

Google Scholar

[30] Xie, J., Zhao, X., Mi, J., Cao, G., Tu, J., Solvothermal synthesis of nanosized CoSb3 skutterudite. J. Zhejiang Univ. A 5 (2004) 1504–1508.

DOI: 10.1631/jzus.2004.1504

Google Scholar

[31] Li, J.Q., Feng, X.W., Sun, W.A., Ao, W.Q., Liu, F.S., Du, Y., Solvothermal synthesis of nano-sized skutterudite Co4−xFexSb12 powders. Mater. Chem. Phys. 112 (2008) 57–62.

DOI: 10.1016/j.matchemphys.2008.05.017

Google Scholar

[32] Mi, J.L., Zhao, X.B., Zhu, T.J., Tu, J.P., Cao, G.S., Solvothermal synthesis of nanostructured ternary skutterudite Fe0.5Ni0.5Sb3. J. Alloys Compd. 399 (2005) 260–263.

DOI: 10.1016/j.jallcom.2005.03.013

Google Scholar

[33] Kumari, L., Li, W., Huang, J.Y., Provencio, P.P., Solvothermal synthesis, structure and optical property of nanosized CoSb3 skutterudite. Nanoscale Res. Lett. 5 (2010) 1698–1705.

DOI: 10.1007/s11671-010-9700-4

Google Scholar

[34] Lu, P.-X., Wu, F., Han, H.-L., Wang, Q., Shen, Z.-G., Hu, X., Thermoelectric properties of rare earths filled CoSb3 based nanostructure skutterudite. J. Alloys Compd. 505 (2010) 255–258.

DOI: 10.1016/j.jallcom.2010.06.040

Google Scholar

[35] Chu, Y., Tang, X., Zhao, W., Zhang, Q., Synthesis and growth of rodlike and spherical nanostructures CoSb3 via ethanol sol–gel method. Cryst. Growth Des. 8 (2008) 208–210.

DOI: 10.1021/cg060924j

Google Scholar

[36] Zhu, Y., Shen, H., Guan, H., Microwave-assisted synthesis and thermoelelectric properties of CoSb3 compounds. J. Mater. Sci. Mater. Electron. 23 (2012) 2210–2215.

DOI: 10.1007/s10854-012-0754-1

Google Scholar

[37] Yang, L., Hng, H.H., Cheng, H., Sun, T., Ma, J., Synthesis of CoSb3 by a modified polyol process. Mater. Lett. 62 (2008) 2483–2485.

DOI: 10.1016/j.matlet.2007.12.054

Google Scholar

[38] Itoh, T., Isogai, K., Syntheses of Ni-doped and Fe-doped CoSb3 Thermoelectric Nanoparticles through Modified Polyol Process. MRS Proc. 1166 (2009) 1166-N03-16.

DOI: 10.1557/proc-1166-n03-16

Google Scholar

[39] Yang, J., Hao, Q., Wang, H., Lan, Y.C., He, Q.Y., Minnich, A., Wang, D.Z., Harriman, J.A., Varki, V.M., Dresselhaus, M.S., Chen, G., Ren, Z.F., Solubility study of Yb in n-type skutterudites YbxCo4Sb12 and their enhanced thermoelectric properties. Phys. Rev. B 80 (2009) 115329.

DOI: 10.1103/physrevb.80.115329

Google Scholar

[40] Yang, J., Chen, Y., Zhu, W., Peng, J., Bao, S., Fan, X., Duan, X., Effect of La filling on thermoelectric properties of LaxCo3.6Ni0.4Sb12-filled skutterudite prepared by MA–HP method. J. Solid State Chem. 179 (2006) 212–216.

DOI: 10.1016/j.jssc.2005.10.029

Google Scholar

[41] He, Q., Hao, Q., Wang, X., Yang, J., Lan, Y., Yan, X., Yu, B., Ma, Y., Poudel, B., Joshi, G., Wang, D., Chen, G., Ren, Z., Nanostructured thermoelectric skutterudite Co1-xNixSb3 alloys. J. Nanosci. Nanotechnol. 8 (2008) 4003–4006.

DOI: 10.1166/jnn.2008.469

Google Scholar

[42] Rogl, G., Grytsiv, A., Yubuta, K., Puchegger, S., Bauer, E., Raju, C., Mallik, R.C., Rogl, P., In-doped multifilled n-type skutterudites with ZT = 1.8. Acta Mater. 95 (2015) 201–211.

DOI: 10.1016/j.actamat.2015.05.024

Google Scholar

[43] Choi, M.K., Ur, S.C., Kwon, J.C., Cho, K.W., Kim, I.H., Lee, Y.G., Ryu, S.L., Mechanical alloying and thermoelectric properties of CoSb3 skutterudite. Mater. Sci. Forum 486–487 (2005) 642–645.

DOI: 10.4028/www.scientific.net/msf.486-487.642

Google Scholar

[44] Peng, J., Liu, X., Fu, L., Xu, W., Liu, Q., Yang, J., Synthesis and thermoelectric properties of In0.2+xCo4Sb12+x composite. J. Alloys Compd. 521 (2012) 141–145.

DOI: 10.1016/j.jallcom.2012.01.093

Google Scholar

[45] Lamberton, G.A., Bhattacharya, S., Littleton, R.T., Kaeser, M.A., Tedstrom, R.H., Tritt, T.M., Yang, J., Nolas, G.S., High figure of merit in Eu-filled CoSb3-based skutterudites. Appl. Phys. Lett. 80 (2002) 598–600.

DOI: 10.1063/1.1433911

Google Scholar

[46] Pei, Y.Z., Yang, J., Chen, L.D., Zhang, W., Salvador, J.R., Yang, J., Improving thermoelectric performance of caged compounds through light-element filling. Appl. Phys. Lett. 95 (2009) 042101 1-3.

DOI: 10.1063/1.3182800

Google Scholar

[47] Deng, L., Ma, H.A., Su, T.C., Yu, F.R., Tian, Y.J., Jiang, Y.P., Dong, N., Zheng, S.Z., Jia, X., Enhanced thermoelectric properties in Co4Sb12−xTex alloys prepared by HPHT. Mater. Lett. 63 (2009) 2139–2141.

DOI: 10.1016/j.matlet.2009.06.008

Google Scholar

[48] Deng, L., Wang, L.B., Ni, J., Qin, J.M., Jia, X.P., Ma, H.A., Enhanced thermoelectric properties of Te-doped and In, Ba double-filled CoSb3 composites by high pressure technology. Mater. Lett. 217 (2018) 44–47.

DOI: 10.1016/j.matlet.2018.01.048

Google Scholar

[49] Wang, L., Deng, L., Qin, J., Jia, X., Enhanced thermoelectric properties of double-filled CoSb3 via high-pressure regulating. Inorg. Chem. 57 (2018) 6762–6766.

DOI: 10.1021/acs.inorgchem.8b01110

Google Scholar

[50] Li, H., Tang, X., Su, X., Zhang, Q., Uher, C., Nanostructured bulk YbxCo4Sb12 with high thermoelectric performance prepared by the rapid solidification method. J. Phys. D. Appl. Phys. 42 (2009) 145409.

DOI: 10.1088/0022-3727/42/14/145409

Google Scholar

[51] Kim, I.-H., Park, K.-H., Ur, S.-C., Thermoelectric properties of Sn-doped CoSb3 prepared by encapsulated induction melting. J. Alloys Compd. 442 (2007) 351–354.

DOI: 10.1016/j.jallcom.2006.08.368

Google Scholar

[52] Liu, W.-S., Zhang, B.-P., Zhao, L.-D., Li, J.-F., Improvement of thermoelectric performance of CoSb3−xTex skutterudite compounds by additional substitution of IVB-group elements for Sb. Chem. Mater. 20 (2008) 7526–7531.

DOI: 10.1021/cm802367f

Google Scholar

[53] Su, X., Li, H., Wang, G., Chi, H., Zhou, X., Tang, X., Zhang, Q., Uher, C., Structure and transport properties of double-doped CoSb2.75Ge0.25– xTex ( x = 0.125–0.20) with in Situ Nanostructure. Chem. Mater. 23 (2011) 2948–2955.

DOI: 10.1021/cm200560s

Google Scholar

[54] Ye, X., Chen, G., Duan, B., Zhai, P., Effect of Te–Se–S triple doping on the thermoelectric properties of CoSb3 skutterudites. J. Electron. Mater. 44 (2015) 1674–1678.

DOI: 10.1007/s11664-014-3512-8

Google Scholar

[55] Mallik, R.C., Anbalagan, R., Rogl, G., Royanian, E., Heinrich, P., Bauer, E., Rogl, P., Suwas, S., Thermoelectric properties of Fe0.2Co3.8Sb12−xTex skutterudites. Acta Mater. 61 (2013) 6698–6711.

DOI: 10.1016/j.actamat.2013.07.032

Google Scholar