[1]
A. R. Gandhe, J. S. Rebello, J. L. Figueiredo, Manganese oxide OL as an effective catalyst for total oxidation of ethylacetate, Appl. Catal. B-Environ. 72 (2007) 129-135.
DOI: 10.1016/j.apcatb.2006.10.017
Google Scholar
[2]
P. P. Hu, Z. Amghouz, Z. W. Huang, et al., Surface-confined atomic silver centers catalyzing formaldehyde oxidation, Environ. Sci. Technol. 49 (2015) 2384-2390.
DOI: 10.1021/es504570n
Google Scholar
[3]
Z. W. Huang, X. Gu, Q. Q. Cao, et al., Catalytically active single-atom sites fabricated from silver particles, Angew. Chem. Int. Edit. 51 (2012) 4198-4203.
DOI: 10.1002/anie.201109065
Google Scholar
[4]
W. L. Dai, Y. Cao, L. P. Ren, et al., Ag-SiO2-A12O3 composite as highly active catalyst for the formation of formaldehyde from the partial oxidation of methanol, J. Catal. 228 (2004) 80-91.
DOI: 10.1016/j.jcat.2004.08.035
Google Scholar
[5]
J. Carnö, M. Ferrandon, E. Björnbom, et al., Mixed manganese oxide/platinum catalysts for total oxidation of model gas from wood boilers, Appl. Catal. A-Gen. 155 (1997) 265-281.
DOI: 10.1016/s0926-860x(97)80129-9
Google Scholar
[6]
F. Kapteijn, L. Singoredjo, A. Andreini, et al., Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric-oxide with ammonia, Appl. Catal. B-Environ. 3 (1994) 173-189.
DOI: 10.1016/0926-3373(93)e0034-9
Google Scholar
[7]
L. Yu, R. Peng, L. Chen, et al., Ag supported on CeO2 with different morphologies for the catalytic oxidation of HCHO, Chem. Eng. J. 334 (2018) 2480-2487.
DOI: 10.1016/j.cej.2017.11.121
Google Scholar
[8]
X. Chen, Y. F. Shen, S. L. Suib, et al., Characterization of manganese oxide octahedral molecular sieve (M-OMS-2) materials with different metal cation dopants, Chem. Mater. 14 (2002) 940-948.
DOI: 10.1021/cm000868o
Google Scholar
[9]
R. H. Ma, Y. Bando, L. Q. Zhang, et al., Layered MnO2 nanobelts: Hydrothermal synthesis and electrochemical measurements, Adv. Mater. 16 (2004) 918-922.
DOI: 10.1002/adma.200306592
Google Scholar
[10]
Q. Ye, J. S. Zhao, F. F. Huo, et al., Nanosized Au supported on three-dimensionally ordered mesoporous β-MnO2: Highly active catalysts for the low-temperature oxidation of carbon monoxide, benzene, and toluene, Micropor. Mesopor. Mat. 172 (2013) 20-29.
DOI: 10.1016/j.micromeso.2013.01.007
Google Scholar
[11]
S. A. C. Carabineiro, S. S. T. Bastos, J. J. M. Órfão, et al., Carbon monoxide oxidation catalysed by exotemplated manganese oxides, Catal. Lett. 134 (2010) 217-227.
DOI: 10.1007/s10562-009-0251-1
Google Scholar
[12]
L. C. Wang, Q. Liu, X. S. Huang, et al., Gold nanoparticles supported on manganese oxides for low-temperature CO oxidation, Appl. Catal. B-Environ. 88 (2009) 204-212.
DOI: 10.1016/j.apcatb.2008.09.031
Google Scholar
[13]
L. Ma, C. Y. Seo, X. Y. Chen, et al., Sodium-promoted Ag/CeO2 nanospheres for catalytic oxidation of formaldehyde, Chem. Eng. J. 350 (2018) 419-428.
DOI: 10.1016/j.cej.2018.05.179
Google Scholar
[14]
Z. P. Qu, Y. B. Bu, Y. Qin, et al., The improved reactivity of manganese catalysts by Ag in catalytic oxidation of toluene, Appl. Catal. B-Environ. 132-133 (2013) 353-362.
DOI: 10.1016/j.apcatb.2012.12.008
Google Scholar
[15]
L. Li, A. Q. Wang, B. T. Qiao, et al., Origin of the high activity of Au/FeOx for low-temperature CO oxidation: Direct evidence for a redox mechanism, J. Catal. 299 (2013) 90-100.
DOI: 10.1016/j.jcat.2012.11.019
Google Scholar
[16]
Y. Wang, D. Widmann, F. Lehnert, et al., Avoiding self-poisoning: A key feature for the high activity of Au/Mg(OH)2 catalysts in continuous low-temperature CO oxidation, Angew. Chem. Int. Edit. 56 (2017) 9597-9602.
DOI: 10.1002/anie.201702178
Google Scholar
[17]
Y. Liu, C. Wen, Y. Guo, et al., Modulated CO oxidation activity of M-doped ceria (M = Cu, Ti, Zr, and Tb): role of the pauling electronegativity of M, J. Phys. Chem. C. 114 (2010) 9889-9897.
DOI: 10.1021/jp101939v
Google Scholar