Octahedral Layered Birnessite (OL) Supported Ag Catalysts: Characterization and Catalytic Oxidation of CO

Article Preview

Abstract:

Octahedral layered birnessite (OL) was synthesized by redox method, and OL supported Ag catalysts (xAg/OL, x = 0.1wt%, 0.2wt%, 0.3wt%, 0.5wt%) were prepared by ion exchange method. Then catalysts were characterized by XRD, SEM, BET, H2-TPR, TG, O2-TPD and in-situ DRIFTS, while the catalytic activity of CO was evaluated. Among xAg/OL samples, the 0.3Ag/OL exhibited the best catalytic activity for CO oxidation (T50 = 105 oC and T90 = 135 oC). The results show that the chemical adsorption of oxygen, the low-temperature reducibility and the strong interaction between the Ag species and OL are related to the excellent catalytic activity of xAg/OL. The reaction mechanism was studied by in-situ DRIFTS. First, O2 was adsorbed and activated on the oxygen vacancies of xAg/OL, then formed oxygen free radical attacked the adsorbed CO and produced CO2, subsequently CO2 desorbed from the catalyst surface. Oxygen vacancies was supplemented by gas O2, thus circulating.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 304)

Pages:

35-44

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. R. Gandhe, J. S. Rebello, J. L. Figueiredo, Manganese oxide OL as an effective catalyst for total oxidation of ethylacetate, Appl. Catal. B-Environ. 72 (2007) 129-135.

DOI: 10.1016/j.apcatb.2006.10.017

Google Scholar

[2] P. P. Hu, Z. Amghouz, Z. W. Huang, et al., Surface-confined atomic silver centers catalyzing formaldehyde oxidation, Environ. Sci. Technol. 49 (2015) 2384-2390.

DOI: 10.1021/es504570n

Google Scholar

[3] Z. W. Huang, X. Gu, Q. Q. Cao, et al., Catalytically active single-atom sites fabricated from silver particles, Angew. Chem. Int. Edit. 51 (2012) 4198-4203.

DOI: 10.1002/anie.201109065

Google Scholar

[4] W. L. Dai, Y. Cao, L. P. Ren, et al., Ag-SiO2-A12O3 composite as highly active catalyst for the formation of formaldehyde from the partial oxidation of methanol, J. Catal. 228 (2004) 80-91.

DOI: 10.1016/j.jcat.2004.08.035

Google Scholar

[5] J. Carnö, M. Ferrandon, E. Björnbom, et al., Mixed manganese oxide/platinum catalysts for total oxidation of model gas from wood boilers, Appl. Catal. A-Gen. 155 (1997) 265-281.

DOI: 10.1016/s0926-860x(97)80129-9

Google Scholar

[6] F. Kapteijn, L. Singoredjo, A. Andreini, et al., Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric-oxide with ammonia, Appl. Catal. B-Environ. 3 (1994) 173-189.

DOI: 10.1016/0926-3373(93)e0034-9

Google Scholar

[7] L. Yu, R. Peng, L. Chen, et al., Ag supported on CeO2 with different morphologies for the catalytic oxidation of HCHO, Chem. Eng. J. 334 (2018) 2480-2487.

DOI: 10.1016/j.cej.2017.11.121

Google Scholar

[8] X. Chen, Y. F. Shen, S. L. Suib, et al., Characterization of manganese oxide octahedral molecular sieve (M-OMS-2) materials with different metal cation dopants, Chem. Mater. 14 (2002) 940-948.

DOI: 10.1021/cm000868o

Google Scholar

[9] R. H. Ma, Y. Bando, L. Q. Zhang, et al., Layered MnO2 nanobelts: Hydrothermal synthesis and electrochemical measurements, Adv. Mater. 16 (2004) 918-922.

DOI: 10.1002/adma.200306592

Google Scholar

[10] Q. Ye, J. S. Zhao, F. F. Huo, et al., Nanosized Au supported on three-dimensionally ordered mesoporous β-MnO2: Highly active catalysts for the low-temperature oxidation of carbon monoxide, benzene, and toluene, Micropor. Mesopor. Mat. 172 (2013) 20-29.

DOI: 10.1016/j.micromeso.2013.01.007

Google Scholar

[11] S. A. C. Carabineiro, S. S. T. Bastos, J. J. M. Órfão, et al., Carbon monoxide oxidation catalysed by exotemplated manganese oxides, Catal. Lett. 134 (2010) 217-227.

DOI: 10.1007/s10562-009-0251-1

Google Scholar

[12] L. C. Wang, Q. Liu, X. S. Huang, et al., Gold nanoparticles supported on manganese oxides for low-temperature CO oxidation, Appl. Catal. B-Environ. 88 (2009) 204-212.

DOI: 10.1016/j.apcatb.2008.09.031

Google Scholar

[13] L. Ma, C. Y. Seo, X. Y. Chen, et al., Sodium-promoted Ag/CeO2 nanospheres for catalytic oxidation of formaldehyde, Chem. Eng. J. 350 (2018) 419-428.

DOI: 10.1016/j.cej.2018.05.179

Google Scholar

[14] Z. P. Qu, Y. B. Bu, Y. Qin, et al., The improved reactivity of manganese catalysts by Ag in catalytic oxidation of toluene, Appl. Catal. B-Environ. 132-133 (2013) 353-362.

DOI: 10.1016/j.apcatb.2012.12.008

Google Scholar

[15] L. Li, A. Q. Wang, B. T. Qiao, et al., Origin of the high activity of Au/FeOx for low-temperature CO oxidation: Direct evidence for a redox mechanism, J. Catal. 299 (2013) 90-100.

DOI: 10.1016/j.jcat.2012.11.019

Google Scholar

[16] Y. Wang, D. Widmann, F. Lehnert, et al., Avoiding self-poisoning: A key feature for the high activity of Au/Mg(OH)2 catalysts in continuous low-temperature CO oxidation, Angew. Chem. Int. Edit. 56 (2017) 9597-9602.

DOI: 10.1002/anie.201702178

Google Scholar

[17] Y. Liu, C. Wen, Y. Guo, et al., Modulated CO oxidation activity of M-doped ceria (M = Cu, Ti, Zr, and Tb): role of the pauling electronegativity of M, J. Phys. Chem. C. 114 (2010) 9889-9897.

DOI: 10.1021/jp101939v

Google Scholar