[1]
K.K. Kefeni, T.A.M. Msagati, B.B. Mamba, Acid mine drainage: Prevention, treatment options, and resource recovery: A Review, J. Cleaner Production, 151 (2017) 475-493.
DOI: 10.1016/j.jclepro.2017.03.082
Google Scholar
[2]
A. Potysz, E.D. van Hullebusch, J. Kierczak, Prospective regarding the use of metallurgical slags as secondary metal resources – A review of bioleaching approaches, J. Environ. Manage. 219 (2018) 138-152.
DOI: 10.1016/j.jenvman.2018.04.083
Google Scholar
[3]
T. Gu, S.O. Rastegar, S.M. Mousavi, M. Li, M. Zhou, Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge, Bioresource Technol. 261 (2018) 28-440.
DOI: 10.1016/j.biortech.2018.04.033
Google Scholar
[4]
B. Vriens, H. Peterson, L. Laurenzi, S. Smith, C. Aranda, K.U. Mayer, R.D. Beckie, Long-term monitoring of waste-rock weathering at the Antamina mine, Peru, Chemosphere 215 (2019) 858-869.
DOI: 10.1016/j.chemosphere.2018.10.105
Google Scholar
[5]
G. Vitor, T.C. Palma, B. Vieira, J.P. Lourenco, R.J. Barros, M.C. Costa, Start-up, adjustment and long-term performance of a two-stage bioremediation process treating real acid mine drainage, coupled with biosynthesis of ZnS nanoparticles and ZnS/TiO2 nanocomposites, Miner. Eng. 75 (2015) 85-93.
DOI: 10.1016/j.mineng.2014.12.003
Google Scholar
[6]
U. Shanker, V. Jassal, M. Rani, B.S. Kaith, Towards green synthesis of nanoparticles: From bio-assisted sources to benign solvents. A review, Int. J. Environ. An. Ch. 96, 9 (2016) 801-831.
Google Scholar
[7]
Z. Sadowski, A. Pawlowska, Biosynthesis of copper nanoparticles using aqueous extracts of Aloe vera and Geranium and bioleaching solutions, Solid state Phenom. 262 (2017) 193-196.
DOI: 10.4028/www.scientific.net/ssp.262.193
Google Scholar
[8]
D.E. Latta, C.A. Gorski, M.I. Boyanov, E.J. O'Loughlin, K.M. Kemner, M.M. Schere, Influence of magnetite stoichiometry on UVI reduction, Envir. Sci. Technol. 46, 2 (2012) 778-786.
DOI: 10.1021/es2024912
Google Scholar
[9]
S-z. Li, R-k. Xu, Electrical double layers' interaction between oppositely charged particles as resulted to surface charge density and ionic strength, Colloid. Surface. A. 326 (2008) 157-161.
DOI: 10.1016/j.colsurfa.2008.05.023
Google Scholar
[10]
D. Kumar, S. Bera, A.K. Tripathi, G.K. Dey, N.M. Gupta, Uranium oxide nanoparticles dispersed inside the mesopores of MBM-48: synthesis and characterization, Micropor. Mesopor. Mater. 66, 2-3 (2003) 157-167.
DOI: 10.1016/j.micromeso.2003.08.027
Google Scholar
[11]
M. Dickinson, T.B. Scott, The application of zero-valent iron nanoparticles for the remediation of a uranium contaminated waste effluent, J. Hazard. Mater. 178, 1-3 (2010) 171-179.
DOI: 10.1016/j.jhazmat.2010.01.060
Google Scholar
[12]
H. Zeng, D.E. Giammar, U(VI) reduction by Fe(II) on hematite nanoparticles, J. Nanopart. Res. 13 (2011) 3741-3754.
DOI: 10.1007/s11051-011-0296-0
Google Scholar
[13]
Z. Sadowski, A. Sklodowska, UO2 nanoparticles synthesis from leaching solution on the hematite support, Annales UMCS Lublin-Polonia, 71 (1) (2016) 79-87.
DOI: 10.17951/aa.2016.71.1.79
Google Scholar