Concentration Phase Transition in a Two-Dimensional Ferromagnet

Article Preview

Abstract:

The concentration phase transition (CPT) in a two-dimensional ferromagnet was simulated by the Monte Carlo method. The description of the CPT was carried out using various order parameters (OP): magnetic, cluster, and percolation. For comparison with the problem of the geometric (percolation) phase transition, the thermal effect on the spin state was excluded, and thus, CPT was reduced to percolation transition. For each OP, the values ​​of the critical concentration and critical indices of the CPT are calculated.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 312)

Pages:

244-250

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.H. Verbeek, J.H. Mydosh, Spin glass freezing above the ferromagnetic percolation limit in AuFe alloys, J. Phys. F: Metal Phys. 8 (1978) 109-112.

DOI: 10.1088/0305-4608/8/5/002

Google Scholar

[2] A. P. Murani, Ferromagnet or spin glass? Magnetic ordering in Au-Fe alloys, J. Phys. F: Metal Phys. 4 (1974) 757-766.

DOI: 10.1088/0305-4608/4/5/017

Google Scholar

[3] A. Mookerjee, S.B. Roy, Magnetic behaviour of spin-glass alloys beyond the percolation concentration, J. Phys. F: Metal Phys. 13 (1983) 1945-1954.

DOI: 10.1088/0305-4608/13/9/018

Google Scholar

[4] B. H. Verbeek, G. J. Nieuwenhuys, H. Stocker J. A. Mydosh, Evidence for a Ferromagnet-Spin-Glass Transition in PdFeMn, Phys. Rev. Let. 40 (1978) 586-589.

DOI: 10.1103/physrevlett.40.586

Google Scholar

[5] H. Maletta, W. Felsch, Magnetic correlations in EuxSr1−xS and the ferromagnet-spin glass transition, Phys. B Cond. Mat. 37 (1980) 55–64.

DOI: 10.1007/bf01325504

Google Scholar

[6] C. A. F. Vaz, J. A. C. Bland and G. Lauhoff, Magnetism in ultrathin film structures, Rep. Prog. Phys.71 (2008) 78.

DOI: 10.1088/0034-4885/71/5/056501

Google Scholar

[7] R. Folk, Yu. Golovach and T. Yavorsky, Critical values of a three-dimensional slightly diluted frozen Ising model, UFN 173 (2003) 175-200.

Google Scholar

[8] H.-O. Heuer, Monte Carlo simulation of disordered 2-dimensional Ising systems, EPL 16 (1991) 503-508.

DOI: 10.1209/0295-5075/16/5/016

Google Scholar

[9] A. K. Murtazaev, A. B. Babaev and G. Ja. Aznaurova, Investigation of the effect of frozen non-magnetic impurities phase transitions in the three-dimensional Potts model, Phys. of the Solid State, 50 (2008) 703-708.

DOI: 10.1134/s1063783408040227

Google Scholar

[10] U. Wolff, Collective Monte Carlo Updating for Spin Systems, Phys. Let. 62 (1989) 361-364.

DOI: 10.1103/physrevlett.62.361

Google Scholar

[11] K. Binder, Critical properties from Monte Carlo coarse graining and renormalization, Phys. Rev. Lett. 47 (1981) 693-696.

DOI: 10.1103/physrevlett.47.693

Google Scholar

[12] K. Binder, D. Hermann, Monte Carlo Simulation in Statistical Physics, Springer Science & Business Media, (2013).

Google Scholar

[13] D. Stauffer, Scaling theory of percolation clusters, Phys. Rep. 54 (1979) 1-74.

Google Scholar

[14] H.J. Hermann, D Stauffer, Corrections to scaling and finite size effects, Phys. Let. A 100 (1984) 366-369.

DOI: 10.1016/0375-9601(84)91087-9

Google Scholar

[15] P.V. Moskalev, Estimates of the threshold and power of percolation clusters on square lattices with a (1, π) neighborhood, Computer Research and Modeling 5 (2014) 405–414.

DOI: 10.20537/2076-7633-2014-6-3-405-414

Google Scholar

[16] D. I. Iudin, Fractals: from simple to complex, Novgorod, (2012).

Google Scholar