[1]
J. Torrens-Serra, J. Rodríguez-Viejo, and M.T. Clavaguera-Mora, Nanocrystallization kinetics and glass forming ability of the Fe65Nb10B25 metallic alloy, Phys. Rev. B 76 (2007) 214111.
DOI: 10.1002/pssa.200983353
Google Scholar
[2]
C. Suryanarayana, A. Inoue, Iron-based bulk metallic glasses, Int. Mater. Rev. 58(3) (2013) 131.
Google Scholar
[3]
Y. Wang, Y. Zhang, A. Takeuchi, A. Makino, and Y. Kawazoe, Investigation on the crystallization mechanism difference between FINEMET and NANOMET type Fe-based soft magnetic amorphous alloys, J. Appl. Phys. 120 (2016) 145102.
DOI: 10.1063/1.4964433
Google Scholar
[4]
Y. Han, F.L. Kong, F.F. Han, A. Inoue, S.L. Zhu, E Shalaan., and F. Al-Marzouki, New Fe-based soft magnetic amorphous alloys with high saturation magnetization and good corrosion resistance for dust core application, Intermetallics. 76 (2016) 18.
DOI: 10.1016/j.intermet.2016.05.011
Google Scholar
[5]
H.X. Li, Z.C. Lu, S.L. Wang, Y. Wu, and Z.P. Lu, Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications, Progress in Materials Science 103 (2019) 235.
DOI: 10.1016/j.pmatsci.2019.01.003
Google Scholar
[6]
A.N. Kotvitckii, G.S. Krainova, A.M. Frolov, and V.S. Pechnikov, Changes in the magnetic parameters of amorphous alloys as an indicator of structural transformations, Bulletin of the Russian Academy of Sciences: Physics. 77(10) (2013) 1206.
DOI: 10.3103/s1062873813100146
Google Scholar
[7]
T.A. Pisarenko, A.M. Frolov, and G.S. Kraynova, Evolution of structure-scaling and magnetic properties during thermal loading of melt-spun Fe70Cr15B15(Sn) alloys, Solid State Phenom. 215 (2014) 190.
DOI: 10.4028/www.scientific.net/ssp.215.190
Google Scholar
[8]
N.I. Chukhrii, V.V. Yudin, A.M. Frolov, and L.A. Yudina, Correlation between morphology of quick-tempered tape surface and atomic disalignment in spinning processes, J. Surf. Investig-X-Ray Synchro. 15 (2000) 653.
Google Scholar
[9]
A.M. Frolov, S.V. Dolzhikov, G.S. Kraynova, Analysis methods of images surface of fast tempered alloys, Adv. Mater. Res. 718 (2013) 1140.
DOI: 10.4028/www.scientific.net/amr.718-720.1140
Google Scholar
[10]
G.S. Kraynova, A.M. Frolov, T.A. Pisarenko, Fractal ordering nanostructured planar media, Adv. Mater. Res. 718-720 (2013) 85.
DOI: 10.4028/www.scientific.net/amr.718-720.85
Google Scholar
[11]
B.N. Grudin, V.S. Plotnikov, Processing and simulating of microscopic images, Dal'nauka, Vladivostok, (2010).
Google Scholar
[12]
I. Vajda, Bounds of the minimal error probability on checking a finite or countable number of hypotheses, Probl. Peredachi Inf. 4(1) (1968) 9–19.
Google Scholar
[13]
H.G.E. Hentschel, I. Procaccia, Relative diffusion in turbulent media: The fractal dimension of clouds, Phys. Rev. A 29 (1984) 1461.
DOI: 10.1103/physreva.29.1461
Google Scholar
[14]
V.S. Ivanova, A.S. Balankin, I.J. Bunin, A.A. Oksogoev, Synergetics and fractals in material science, Nauka, Moscow, (1994).
Google Scholar
[15]
M. Schroeder, Fractals, chaos, power laws, Freeman, New York, (1991).
Google Scholar
[16]
T.A. Pisarenko, G.S. Kraynova, and A.M. Frolov, Kinetics of the fractal mesodefect structure of melt-spun Fe70Cr15B15(Sn) alloys during annealing, Solid State Phenom. 247 (2016) 101.
DOI: 10.4028/www.scientific.net/ssp.247.101
Google Scholar
[17]
T.A. Pisarenko, A.M. Frolov, and G.S. Krainova, Evolution of the multiscale hierarchical structure of defects in a melt-quenched Fe70Cr15B15(Sn) alloy during low-temperature annealing, Russian Metallurgy (Metally). 10 (2019) 943.
DOI: 10.1134/s0036029519100215
Google Scholar