Photonic Nanojet Generation in Transmission and Reflection Mode

Article Preview

Abstract:

This paper is related to the problem of enhancing the optical and functional performance of luminescent gas sensors via its excitation by photonic nanojets. The novel sensor structure consisting of the array of alumina microparticles covered by optical sensitive layer was designed. The parameters of the photonic nanojets generated in both transmission and reflection modes has been numerically end experimentally studied. It was shown that PNJ in reflection mode demonstrates an unexpectedly high enhancement of photoluminescence. It was obtained that the excitation of the sensitive layer by photonic nanojets extends the limit of gaseous ammonia detection up to 0.1 ppm for reflection mode and up to 0.02 ppm for transmission mode.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 312)

Pages:

213-220

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.F. Lu, L. Zhang, W.D. Song, Y.W. Zheng, B.S. Luk'yanchuk, Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation, JETP Lett. 72 (2000) 457–459.

DOI: 10.1134/1.1339899

Google Scholar

[2] Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, M. Hong. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope, Nat. Commun. 2 (2011) 218.

DOI: 10.1038/ncomms1211

Google Scholar

[3] C. McDonagh, C.S. Burke, B.D. MacCraith, Optical chemical sensors, Chem. Rev. 108 (2008) 400-422.

DOI: 10.1021/cr068102g

Google Scholar

[4] M. Li, S.K. Cushing, N. Wu, Plasmon-enhanced optical sensors: a review, Analyst. 140(2) (2015) 386-406.

DOI: 10.1039/c4an01079e

Google Scholar

[5] J. Zhu, L.L. Goddard. Spatial control of photonic nanojets, Opt. Exp. 24 (2016) 30444-30464.

DOI: 10.1364/oe.24.030444

Google Scholar

[6] R. Chen, J. Lin, P. Jin, M. Cada, Y Ma, Photonic nanojet beam shaping by illumination polarization engineering, Opt. Comm. 456 (2020) 124593.

DOI: 10.1016/j.optcom.2019.124593

Google Scholar

[7] M. Wu, R. Chen, J. Ling, Z. Chen, X. Chen, R. Ji, M. Hong, Creation of a longitudinally polarized photonic nanojet via an engineered microsphere, Opt. Lett. 42(7) (2017) 1444-1447.

DOI: 10.1364/ol.42.001444

Google Scholar

[8] A. Sergeev, S. Voznesenskiy, Specific features of chitosan waveguides optical response formation to changes in the values of relative humidity, Opt. Mat. 43 (2015) 33-35.

DOI: 10.1016/j.optmat.2015.02.018

Google Scholar

[9] L. Yue, B. Yan, J.N. Monks, R. Dhama, Z. Wang, O.V. Minin, I.V. Minin, Photonic Jet by a Near-Unity-Refractive-Index Sphere on a Dielectric Substrate with High Index Contrast, Ann. Phys. 530(6) (2018) 1800032.

DOI: 10.1002/andp.201800032

Google Scholar

[10] P.A. Bobbert, J. Vlieger, Light scattering by a sphere on a substrate, Physica A. 137(1-2) (1986) 209-242.

DOI: 10.1016/0378-4371(86)90072-5

Google Scholar

[11] B.S. Luk'Yanchuk, Z.B. Wang, W.D. Song, M.H. Hong, Particle on surface: 3D-effects in dry laser cleaning, Appl. Phys. A. 79 (2004) 747–751.

DOI: 10.1007/s00339-004-2567-4

Google Scholar

[12] A.G. Mirochnik, N.V. Petrochenkova, A.S. Shishov, B.V. Bukvetskii, T.B. Emelina, A.A. Sergeev, S.S. Voznesenskii, Europium(III) tris-dibenzoylmethanate as an efficient chemosensor for detection of ammonia, Spectrochim. Acta A. 155 (2016) 111–115.

DOI: 10.1016/j.saa.2015.11.004

Google Scholar

[13] H. Yang, M. Cornaglia, M.A.M. Gijs, Photonic Nanojet Array for Fast Detection of Single Nanoparticles in a Flow, Nano Lett. 15(3) (2015) 1730-1735.

DOI: 10.1021/nl5044067

Google Scholar