[1]
Issi, J. P. Low temperature transport properties of the group V semimetals. Australian Journal of Physics 32.6 (1979): 585-628.
DOI: 10.1071/ph790585
Google Scholar
[2]
Linseis, V., Völklein, F., Reith, H., Hühne, R., Schnatmann, L., Nielsch, K., & Woias, P.Thickness and temperature dependent thermoelectric properties of Bi87Sb13 nanofilms measured with a novel measurement platform. Semiconductor Science and Technology 33.8 (2018): 085014.
DOI: 10.1088/1361-6641/aacf39
Google Scholar
[3]
Bochegov, V.I., and V.M. Grabov. On the thermal conductivity of the gradient-inhomogeneous branches of thermoelements at a difference in the operating temperature. Semiconductors 51.7 (2017): 874-875.
DOI: 10.1134/S106378261707003X
Google Scholar
[4]
Vecchi, M. P., and M. S. Dresselhaus. Temperature dependence of the band parameters of bismuth. Physical Review B 10.2 (1974): 771.
DOI: 10.1103/physrevb.10.771
Google Scholar
[5]
Jain, Adishwar Lal. Temperature dependence of the electrical properties of bismuth-antimony alloys. Physical Review 114.6 (1959): 1518.
DOI: 10.1103/PhysRev.114.1518
Google Scholar
[6]
Kalinkina, I. N., and P. G. Strekov. SPECIFIC HEAT OF BISMUTH BETWEEN 0.3 AND 4.4-DEGREES-K. SOVIET PHYSICS JETP-USSR 7.3 (1958): 426-429.
Google Scholar
[7]
Dhillon, J. S., and David Shoenberg. The de Haas-van Alphen effect III. Experiments at fields up to 32KG. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 248.937 (1955): 1-21.
DOI: 10.1098/rsta.1955.0007
Google Scholar
[8]
Hofmann, Ph. The surfaces of bismuth: Structural and electronic properties. Progress in surface science 81.5 (2006): 191-245.
DOI: 10.1016/j.progsurf.2006.03.001
Google Scholar
[9]
Sandomirskii, V. B. Quantum size effect in a semimetal film. Sov. Phys. JETP 25.1 (1967): 101.
Google Scholar
[10]
Federici, J. F., Schulkin, B., Huang, F., Gary, D., Barat, R., Oliveira, F., & Zimdars, D. THz imaging and sensing for security applications—explosives, weapons and drugs. Semiconductor Science and Technology 20.7 (2005): S266.
DOI: 10.1088/0268-1242/20/7/018
Google Scholar
[11]
Grebenchukov, A. N., Zaitsev, A. D., Novoselov, M. G., Demchenko, P. S., Kovalska, E. O., Alonso, E. T., ... & Khodzitsky, M. K. Photoexcited terahertz conductivity in multi-layered and intercalated graphene. Optics Communications 459 (2020): 124982.
DOI: 10.1016/j.optcom.2019.124982
Google Scholar
[12]
Shekhar, P., J. Atkinson, and J. Zubin. Hyperbolic Metamaterials: Fundamentals and Applications, Nano Convergence, 1-14. (2014).
DOI: 10.1186/s40580-014-0014-6
Google Scholar
[13]
Rytov, S. Electromagnetic properties of a finely stratified medium. Soviet Physics JEPT 2 (1956): 466-475.
Google Scholar
[14]
Poddubny, Alexander, et al. Hyperbolic metamaterials. Nature photonics 7.12 (2013): 948.
Google Scholar
[15]
Zaitsev, A. D., Demchenko, P. S., Zykov, D. V., Korotina, E. A., Makarova, E. S., Tkhorzhevskiy, I. L., Tukmakova, A. S., Kablukova, N. S., Asach, A. V., Novotelnova, A. V., Khodzitsky, M. K. Optical and Galvanomagnetic Properties of Bi1-xSbx Thin Films in the Terahertz Frequency Range. Applied Sciences, 10(8), 2724 (2020).
DOI: 10.3390/app10082724
Google Scholar
[16]
Elser, Justin, et al. Nonlocal effects in effective-medium response of nanolayered metamaterials. Applied physics letters 90.19 (2007): 191109.
DOI: 10.1063/1.2737935
Google Scholar
[17]
Naftaly, Mira, and Robert E. Miles. Terahertz time-domain spectroscopy for material characterization. Proceedings of the IEEE 95.8 (2007): 1658-1665.
DOI: 10.1109/jproc.2007.898835
Google Scholar
[18]
Demidov, E. V., et al. Specific Features of the Quantum-Size Effect in Transport Phenomena in Bismuth-Thin Films on Mica Substrates. Semiconductors 53.6 (2019): 727-731.
DOI: 10.1134/s1063782619060046
Google Scholar
[19]
Novotny, L.; Hecht, B. Principles of nano-optics; Cambridge university press (2012).
Google Scholar