Properties of Bi and BiSb Nano-Dimensional Layers in Thz Frequency Range

Article Preview

Abstract:

In the present paper we demonstrate and compare different properties of Bi and Bi1-xSbx thin films placed on polyimide (PI) substrate in frequency range from 0.2 to 1.0 THz. Bi films with a thickness of 40, 105 and 150 nm have been studied as well as 150 nm Bi1-xSbx solid solutions with Sb concentration of 5, 8, 12 and 15 %. An effective refractive index and permittivity of whole substrate/film structures have been derived by using terahertz time-domain spectroscopy (THz-TDS) method. These measurements have shown the positive phase shift in PI substrate with a thickness of 42 μm and revealed that it is barely transparent in studied frequency range, but the whole substrate/film structure provides the negative phase shift of terahertz wave. It was shown that the permittivity depends on mobility of charge carriers which is driven by film thickness and antimony content.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 312)

Pages:

206-212

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Issi, J. P. Low temperature transport properties of the group V semimetals. Australian Journal of Physics 32.6 (1979): 585-628.

DOI: 10.1071/ph790585

Google Scholar

[2] Linseis, V., Völklein, F., Reith, H., Hühne, R., Schnatmann, L., Nielsch, K., & Woias, P.Thickness and temperature dependent thermoelectric properties of Bi87Sb13 nanofilms measured with a novel measurement platform. Semiconductor Science and Technology 33.8 (2018): 085014.

DOI: 10.1088/1361-6641/aacf39

Google Scholar

[3] Bochegov, V.I., and V.M. Grabov. On the thermal conductivity of the gradient-inhomogeneous branches of thermoelements at a difference in the operating temperature. Semiconductors 51.7 (2017): 874-875.

DOI: 10.1134/S106378261707003X

Google Scholar

[4] Vecchi, M. P., and M. S. Dresselhaus. Temperature dependence of the band parameters of bismuth. Physical Review B 10.2 (1974): 771.

DOI: 10.1103/physrevb.10.771

Google Scholar

[5] Jain, Adishwar Lal. Temperature dependence of the electrical properties of bismuth-antimony alloys. Physical Review 114.6 (1959): 1518.

DOI: 10.1103/PhysRev.114.1518

Google Scholar

[6] Kalinkina, I. N., and P. G. Strekov. SPECIFIC HEAT OF BISMUTH BETWEEN 0.3 AND 4.4-DEGREES-K. SOVIET PHYSICS JETP-USSR 7.3 (1958): 426-429.

Google Scholar

[7] Dhillon, J. S., and David Shoenberg. The de Haas-van Alphen effect III. Experiments at fields up to 32KG. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 248.937 (1955): 1-21.

DOI: 10.1098/rsta.1955.0007

Google Scholar

[8] Hofmann, Ph. The surfaces of bismuth: Structural and electronic properties. Progress in surface science 81.5 (2006): 191-245.

DOI: 10.1016/j.progsurf.2006.03.001

Google Scholar

[9] Sandomirskii, V. B. Quantum size effect in a semimetal film. Sov. Phys. JETP 25.1 (1967): 101.

Google Scholar

[10] Federici, J. F., Schulkin, B., Huang, F., Gary, D., Barat, R., Oliveira, F., & Zimdars, D. THz imaging and sensing for security applications—explosives, weapons and drugs. Semiconductor Science and Technology 20.7 (2005): S266.

DOI: 10.1088/0268-1242/20/7/018

Google Scholar

[11] Grebenchukov, A. N., Zaitsev, A. D., Novoselov, M. G., Demchenko, P. S., Kovalska, E. O., Alonso, E. T., ... & Khodzitsky, M. K. Photoexcited terahertz conductivity in multi-layered and intercalated graphene. Optics Communications 459 (2020): 124982.

DOI: 10.1016/j.optcom.2019.124982

Google Scholar

[12] Shekhar, P., J. Atkinson, and J. Zubin. Hyperbolic Metamaterials: Fundamentals and Applications, Nano Convergence, 1-14. (2014).

DOI: 10.1186/s40580-014-0014-6

Google Scholar

[13] Rytov, S. Electromagnetic properties of a finely stratified medium. Soviet Physics JEPT 2 (1956): 466-475.

Google Scholar

[14] Poddubny, Alexander, et al. Hyperbolic metamaterials. Nature photonics 7.12 (2013): 948.

Google Scholar

[15] Zaitsev, A. D., Demchenko, P. S., Zykov, D. V., Korotina, E. A., Makarova, E. S., Tkhorzhevskiy, I. L., Tukmakova, A. S., Kablukova, N. S., Asach, A. V., Novotelnova, A. V., Khodzitsky, M. K. Optical and Galvanomagnetic Properties of Bi1-xSbx Thin Films in the Terahertz Frequency Range. Applied Sciences, 10(8), 2724 (2020).

DOI: 10.3390/app10082724

Google Scholar

[16] Elser, Justin, et al. Nonlocal effects in effective-medium response of nanolayered metamaterials. Applied physics letters 90.19 (2007): 191109.

DOI: 10.1063/1.2737935

Google Scholar

[17] Naftaly, Mira, and Robert E. Miles. Terahertz time-domain spectroscopy for material characterization. Proceedings of the IEEE 95.8 (2007): 1658-1665.

DOI: 10.1109/jproc.2007.898835

Google Scholar

[18] Demidov, E. V., et al. Specific Features of the Quantum-Size Effect in Transport Phenomena in Bismuth-Thin Films on Mica Substrates. Semiconductors 53.6 (2019): 727-731.

DOI: 10.1134/s1063782619060046

Google Scholar

[19] Novotny, L.; Hecht, B. Principles of nano-optics; Cambridge university press (2012).

Google Scholar