Fabrication of Anisotropic Structures on the Surface of Amorphous Silicon by Femtosecond Laser Pulses

Article Preview

Abstract:

Anisotropic periodic relief in form of ripples was formed on surface of amorphous hydrogenated silicon (a-Si:H) films by femtosecond laser pulses with the wavelength of 1.25 μm. The orientation of the surface structures relative to laser radiation polarization vector depended on the number of laser pulses N acting on the film surface. When N = 30, the structures with 0.88 μm period were formed orthogonal to the laser radiation polarization; at N = 750 the surface structures had period of 1.12 μm and direction parallel to the polarization. The conductivity of the laser-modified a-Si:H films increased by 3 to 4 orders of magnitude, up to 3.8·10–5 (Ω∙cm)–1, due to formation of nanocrystalline Si phase with a volume fraction from 17 to 30%. Anisotropy of the dark conductivity, as well as anisotropy of the photoconductivity spectral dependences was observed in the modified films due to depolarizing influence of periodic microscale relief and uneven distribution of nanocrystalline Si phase within such laser-induced structure.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 312)

Pages:

192-199

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Lin, Z. Xu, D. Yu et al., Dual-layer nanostructured flexible thin-film amorphous silicon solar cells with enhanced light harvesting and photoelectric conversion efficiency, ACS Appl. Mater. Interfaces 8(17) (2016) 10929–10936.

DOI: 10.1021/acsami.6b02194

Google Scholar

[2] D.L. Staebler and R.C. Wronski, Reversible conductivity changes in discharge-produced amorphous Si, Appl. Phys. Lett. 31(4) (1977) 292–294.

DOI: 10.1063/1.89674

Google Scholar

[3] D.V. Shuleiko, F.V. Potemkin, I.A. Romanov et al., Femtosecond laser pulse modification of amorphous silicon films: control of surface anisotropy, Laser Phys. Lett. 15 (2018) 056001.

DOI: 10.1088/1612-202x/aaacf9

Google Scholar

[4] K.-H. Kim, E.V. Johnson and P.R. Cabarrocas, Irreversible light induced degradation and stabilization of hydrogenated polymorphous silicon solar cells, Solar Energy Materials and Solar Cells 105 (2012) 208–212.

DOI: 10.1016/j.solmat.2012.06.026

Google Scholar

[5] L. Hong, X.C. Wang, H.Y. Zheng et al., Femtosecond laser induced nanocone structure and simultaneous crystallization of 1.6 μm amorphous silicon thin film for photovoltaic application, J. Phys. D: Appl. Phys. 46(19) (2013) 195109.

DOI: 10.1088/0022-3727/46/19/195109

Google Scholar

[6] M. Kang, T. Park, M. Kim et al., Periodic surface texturing of amorphous-Si thin film irradiated by UV nanosecond laser, Opt. Mater. Express 9(11) (2019) 4247–4255.

DOI: 10.1364/ome.9.004247

Google Scholar

[7] J. Huang, L. Jiang, X. Li et al., Fabrication of highly homogeneous and controllable nanogratings on silicon via chemical etching-assisted femtosecond laser modification, Nanophotonics 8(5) (2019) 869 – 878.

DOI: 10.1515/nanoph-2019-0056

Google Scholar

[8] G. Miyaji and K. Miyazaki, Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses, Optics express 16(20) (2008) 16265–16271.

DOI: 10.1364/oe.16.016265

Google Scholar

[9] G.A. Martsinovskiǐ, G.D. Shandybina, D.S. Smirnov et al., Ultrashort excitations of surface polaritons and waveguide modes in semiconductors, Opt. Spectrosc. 105(1) (2008) 67–72.

DOI: 10.1134/s0030400x08070114

Google Scholar

[10] R. Drevinskas, M. Beresna, M. Gecevičius et al., Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon, Appl. Phys. Lett. 106(17) (2015) 171106.

DOI: 10.1063/1.4919538

Google Scholar

[11] A. Dostovalov, K. Bronnikov, V. Korolkov et al., Hierarchical anti-reflective laser-induced periodic surface structures (LIPSS) on amorphous Si films for sensing applications, Nanoscale, Accepted Manuscript (2020).

DOI: 10.1039/d0nr02182b

Google Scholar

[12] G.F.B. Almeida, M.R. Cardoso, P.H.B. Aoki et al., Surface morphology and structural modification induced by femtosecond pulses in hydrogenated amorphous silicon films, J. Nanosci. Nanotechnol. 15(3) (2015) 2495–2500.

DOI: 10.1166/jnn.2015.9820

Google Scholar

[13] V.G. Golubev, V.Yu. Davydov, A.V. Medvedev et al., Raman scattering spectra and electrical conductivity of thin silicon films with a mixed amorphous-nanocrystalline phase composition: Determination of the nanocrystalline volume fraction, Physics of the Solid State 39(8) (1997) 1197–1201.

DOI: 10.1134/1.1130042

Google Scholar

[14] G. Viera, S. Huet and L Boufendi, Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy, J. Appl. Phys. 90(8) (2001) 4175 – 4183.

DOI: 10.1063/1.1398601

Google Scholar

[15] A.V. Emelyanov, M.V. Khenkin, A.G. Kazanskii et al., Structural and electrophysical properties of femtosecond laser exposed hydrogenated amorphous silicon films, Proc. of SPIE 8438 (2012) 84381I.

DOI: 10.1117/12.922896

Google Scholar

[16] I.W. Boyd, J.I.B. Wilson, Oxidation of silicon surfaces by CO2 lasers, Appl. Phys. Lett. 41 (1982) 162-164.

Google Scholar

[17] A.A. Ionin, S.I. Kudryashov, A.O. Levchenko et al., Correlated topographic and structural modification on Si surface during multi-shot femtosecond laser exposures: Si nanopolymorphs as potential local structural nanomarkers, Appl. Surf. Sci. 416 (2017) 988–95.

DOI: 10.1016/j.apsusc.2017.04.215

Google Scholar