[1]
Y. Lin, Z. Xu, D. Yu et al., Dual-layer nanostructured flexible thin-film amorphous silicon solar cells with enhanced light harvesting and photoelectric conversion efficiency, ACS Appl. Mater. Interfaces 8(17) (2016) 10929–10936.
DOI: 10.1021/acsami.6b02194
Google Scholar
[2]
D.L. Staebler and R.C. Wronski, Reversible conductivity changes in discharge-produced amorphous Si, Appl. Phys. Lett. 31(4) (1977) 292–294.
DOI: 10.1063/1.89674
Google Scholar
[3]
D.V. Shuleiko, F.V. Potemkin, I.A. Romanov et al., Femtosecond laser pulse modification of amorphous silicon films: control of surface anisotropy, Laser Phys. Lett. 15 (2018) 056001.
DOI: 10.1088/1612-202x/aaacf9
Google Scholar
[4]
K.-H. Kim, E.V. Johnson and P.R. Cabarrocas, Irreversible light induced degradation and stabilization of hydrogenated polymorphous silicon solar cells, Solar Energy Materials and Solar Cells 105 (2012) 208–212.
DOI: 10.1016/j.solmat.2012.06.026
Google Scholar
[5]
L. Hong, X.C. Wang, H.Y. Zheng et al., Femtosecond laser induced nanocone structure and simultaneous crystallization of 1.6 μm amorphous silicon thin film for photovoltaic application, J. Phys. D: Appl. Phys. 46(19) (2013) 195109.
DOI: 10.1088/0022-3727/46/19/195109
Google Scholar
[6]
M. Kang, T. Park, M. Kim et al., Periodic surface texturing of amorphous-Si thin film irradiated by UV nanosecond laser, Opt. Mater. Express 9(11) (2019) 4247–4255.
DOI: 10.1364/ome.9.004247
Google Scholar
[7]
J. Huang, L. Jiang, X. Li et al., Fabrication of highly homogeneous and controllable nanogratings on silicon via chemical etching-assisted femtosecond laser modification, Nanophotonics 8(5) (2019) 869 – 878.
DOI: 10.1515/nanoph-2019-0056
Google Scholar
[8]
G. Miyaji and K. Miyazaki, Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses, Optics express 16(20) (2008) 16265–16271.
DOI: 10.1364/oe.16.016265
Google Scholar
[9]
G.A. Martsinovskiǐ, G.D. Shandybina, D.S. Smirnov et al., Ultrashort excitations of surface polaritons and waveguide modes in semiconductors, Opt. Spectrosc. 105(1) (2008) 67–72.
DOI: 10.1134/s0030400x08070114
Google Scholar
[10]
R. Drevinskas, M. Beresna, M. Gecevičius et al., Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon, Appl. Phys. Lett. 106(17) (2015) 171106.
DOI: 10.1063/1.4919538
Google Scholar
[11]
A. Dostovalov, K. Bronnikov, V. Korolkov et al., Hierarchical anti-reflective laser-induced periodic surface structures (LIPSS) on amorphous Si films for sensing applications, Nanoscale, Accepted Manuscript (2020).
DOI: 10.1039/d0nr02182b
Google Scholar
[12]
G.F.B. Almeida, M.R. Cardoso, P.H.B. Aoki et al., Surface morphology and structural modification induced by femtosecond pulses in hydrogenated amorphous silicon films, J. Nanosci. Nanotechnol. 15(3) (2015) 2495–2500.
DOI: 10.1166/jnn.2015.9820
Google Scholar
[13]
V.G. Golubev, V.Yu. Davydov, A.V. Medvedev et al., Raman scattering spectra and electrical conductivity of thin silicon films with a mixed amorphous-nanocrystalline phase composition: Determination of the nanocrystalline volume fraction, Physics of the Solid State 39(8) (1997) 1197–1201.
DOI: 10.1134/1.1130042
Google Scholar
[14]
G. Viera, S. Huet and L Boufendi, Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy, J. Appl. Phys. 90(8) (2001) 4175 – 4183.
DOI: 10.1063/1.1398601
Google Scholar
[15]
A.V. Emelyanov, M.V. Khenkin, A.G. Kazanskii et al., Structural and electrophysical properties of femtosecond laser exposed hydrogenated amorphous silicon films, Proc. of SPIE 8438 (2012) 84381I.
DOI: 10.1117/12.922896
Google Scholar
[16]
I.W. Boyd, J.I.B. Wilson, Oxidation of silicon surfaces by CO2 lasers, Appl. Phys. Lett. 41 (1982) 162-164.
Google Scholar
[17]
A.A. Ionin, S.I. Kudryashov, A.O. Levchenko et al., Correlated topographic and structural modification on Si surface during multi-shot femtosecond laser exposures: Si nanopolymorphs as potential local structural nanomarkers, Appl. Surf. Sci. 416 (2017) 988–95.
DOI: 10.1016/j.apsusc.2017.04.215
Google Scholar