Comparative Study of Bismuth Composites Obtained via Pulsed Laser Ablation in a Liquid and in Air for Photocatalytic Application

Article Preview

Abstract:

In the present work, bismuth-based nanoparticles of various compositions were obtained by pulsed laser ablation of a metallic bismuth target in water and air using a Q-switch Nd:YAG laser (wavelength of 1064 nm, pulse duration of 7 ns, frequency of 20 Hz, and pulse energy of 160 mJ). Then the samples were annealed in air at temperatures up to 600°C. A comparative analysis of the obtained powders was carried out using methods of X-ray diffraction, transmission electron microscopy, specific surface area measurements, IR-Fourier and UV-Vis Spectroscopy. The photocatalytic activity of the synthesized materials in the process of Rhodamine B decomposition under irradiation of a LED source (375 nm) was also studied.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 312)

Pages:

172-178

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Chen, M.H. So, J. Yang, F. Deng, C.M. Che, H.Z. Sun, Fabrication of bismuth subcarbonate nanotube arrays from bismuth Citrate, Chem. Commun. (2006) 2265–2267.

DOI: 10.1039/b601764a

Google Scholar

[2] L. Leontie, M. Caraman, M. Alexe, C. Harnagea, Structural and optical characteristics of bismuth oxide thin films, Surf. Sci. 507 (2002) 480–485.

DOI: 10.1016/s0039-6028(02)01289-x

Google Scholar

[3] V. Fruth, M. Popa, D. Berger, R. Ramer, A. Gartner, A. Ciulei, A. Zaharescu, Deposition and characterisation of bismuth oxide thin films, J. Eur. Ceram. Soc. 25 (2005) 2171–2174.

DOI: 10.1016/j.jeurceramsoc.2005.03.025

Google Scholar

[4] P. Shuk, H. D. Wiemhofer, U. Guth, W. Gopel, M. Greenblatt, Oxide ion conducting solid electrolytes based on Bi2O3, Solid State Ion. 89 (1996) 179–196.

DOI: 10.1016/0167-2738(96)00348-7

Google Scholar

[5] H. Weidong, Q. Wei, W. Xiaohong, D. Xianbo, C. Long, J. Zhaohua, The photocatalytic properties of bismuth oxide films prepared through the sol–gel method, Thin Solid Films 515 (2007) 5362 – 5365.

DOI: 10.1016/j.tsf.2007.01.031

Google Scholar

[6] S. Khodadoost, A. Hadi, J. Karimi-Sabet, M. Mehdipourghazi, A. Golzary, Optimization of hydrothermal synthesis of Bismuth titanate nanoparticles and application for photocatalytic degradation of Tetracycline, J. Environ. Chem. Eng. 5 (2017) 5369 – 5380.

DOI: 10.1016/j.jece.2017.10.006

Google Scholar

[7] H. Zeng, X.-W. Du, S.C. Singh, S.A. Kulinich, S. Yang, J. He, W. Cai, Nanomaterials via laser ablation/irradiation in liquid: A review, Adv. Funct. Mater. 22 (2012) 1333–1353.

DOI: 10.1002/adfm.201102295

Google Scholar

[8] S. Reichenberger, G. Marzun, M. Muhler, S. Barcikowski, Perspective of Surfactant-free Colloidal Nanoparticles in Heterogeneous, Catalysis, ChemCatChem 11 (2019) 1–31.

DOI: 10.1002/cctc.201900666

Google Scholar

[9] D.A. Goncharova, T.S. Kharlamova, I.N. Lapin, V.A. Svetlichnyi, Chemical and Morphological Evolution of Copper NPs Obtained by Pulsed Laser Ablation in Liquid, J. Phys. Chem. C 123 (2019) 21731−21742.

DOI: 10.1021/acs.jpcc.9b03958

Google Scholar

[10] D. Zhang, C. Zhang, J. Liu, Q. Chen, X. Zhu, C. Liang, Carbon-Encapsulated Metal/Metal Carbide/Metal Oxide Core–Shell Nanostructures Generated by Laser Ablation of Metals in Organic Solvents, ACS Appl. Nano Mater. 2 (2019) 28−39.

DOI: 10.1021/acsanm.8b01541

Google Scholar

[11] M. Fernández-Arias, M. Boutinguiza, J. Del Val, A. Riveiro, D. Rodríguez, F. Arias-González, J. Gil, J. Pou, Fabrication and deposition of copper and copper oxide nanoparticles by laser ablation in open air, Nanomaterials 10 (2020) 300.

DOI: 10.3390/nano10020300

Google Scholar

[12] V.A. Svetlichnyi, A.V. Shabalina, I.N. Lapin, D.A. Goncharova, T.S. Kharlamova, A.I. Stadnichenko, Comparative Study of Magnetite Nanoparticles Obtained by Pulsed Laser Ablation in Water and Air, App. Surf. Sci. 467–468 (2019) 402–410.

DOI: 10.1016/j.apsusc.2018.10.189

Google Scholar

[13] E.A. Gavrilenko, D.A. Goncharova, I.N. Lapin, A.L. Nemoykina, V.A. Svetlichnyi, A.A. Aljulaih, N. Mintcheva, S.A. Kulinich, Comparative study of physicochemical and antibacterial properties of ZnO nanoparticles prepared by laser ablation of Zn target in water and air, Materials 12 (2019) 186.

DOI: 10.3390/ma12010186

Google Scholar

[14] G.E. Tobon-Zapata, S.B. Etcheverry, E.J. Baran, Vibrational spectrum of bismuth subcarbonate, J. Mater. Sci. Lett. 16 (1997) 656–657.

Google Scholar

[15] H. Huang, N. Tian, S. Jin, Y. Zhang, S. Wang, Syntheses, characterization and nonlinear optical properties of a bismuth subcarbonate Bi2O2CO3, Solid State Sci. 30 (2014) 1-5.

DOI: 10.1016/j.solidstatesciences.2014.01.010

Google Scholar

[16] W.Cen, T. Xiong, C. Tang, S. Yuan, F. Dong, Effects of Morphology and Crystallinity on the Photocatalytic Activity of (BiO)2CO3, Ind. Eng.Chem. Res. 53 (2014) 15002−15011.

DOI: 10.1021/ie502670n

Google Scholar

[17] S. Hariharan, R. Udayabhaskar, T.R. Ravindran, B. Karthikeyan, Surfactant assisted control on optical, fluorescence and phonon lifetime in α-Bi2O3 microrods, Spectrochim Acta A 163 (2016) 13–19.

DOI: 10.1016/j.saa.2016.02.045

Google Scholar

[18] S.M. Yakout, New efficient sunlight photocatalysts based on Gd, Nb, V and Mn doped alpha-Bi2O3 phase, J. Environ. Chem. Eng. 8 (2020) 103644.

DOI: 10.1016/j.jece.2019.103644

Google Scholar

[19] K. Valencia, A. López, A. Hernández-Gordillo, R. Zanella, S. E. Rodila, Stabilized β-Bi2O3 nanoparticles from (BiO)4CO3(OH)2 precursor and their photocatalytic properties under blue light, Ceram. 44 (2018) 22329–22338.

DOI: 10.1016/j.ceramint.2018.08.358

Google Scholar

[20] K. K. Bera, R. Majumdar, M. Chakraborty, K.S. Bhattacharya, Phase control synthesis of α, β and α/β Bi2O3 hetero-junction with enhanced and synergistic photocatalytic activity on degradation of toxic dye, Rhodamine B under natural sunlight, J. Hazard. Mater. 352 (2018) 182–191.

DOI: 10.1016/j.jhazmat.2018.03.029

Google Scholar

[21] Y.Qiu, M.Yang, H. Fan, Y. Zuo, Y. Shao, Y. Xu, X. Yang, Sh. Yang, Phase-transitions of α- and β-Bi2O3 nanowires, Mater. Lett. 65 (2011) 780–782.

DOI: 10.1016/j.matlet.2010.11.045

Google Scholar

[22] X. Hu, T. Mohamood, W. Ma, C. Chen, J. Zhao, Oxidative Decomposition of Rhodamine B Dye in the Presence of VO2+ and/or Pt(IV) under Visible Light Irradiation: N-Deethylation, Chromophore Cleavage, and Mineralization, J. Phys. Chem. B 110 (2006) 26012–26018.

DOI: 10.1021/jp063588q

Google Scholar