Pulsed Laser Ablation of Silicon Nanowires in Water and Ethanol

Article Preview

Abstract:

A novel two-stage technique to fabricate silicon nanoparticles is reported. At the first stage, silicon nanowire arrays are formed by metal-assisted chemical etching. At the second stage, the nanoparticles are produced by pulsed laser ablation of the silicon nanowire targets in water and ethanol. The fabricated particles have relatively small mean size in the range of 24 – 45 nm depending on the used buffer liquid. The ablation threshold of the silicon nanowire arrays is 2 – 11 times smaller than that for crystalline silicon targets. Owing to the achieved parameters, the proposed technique is more efficient in comparison with traditional approaches of mechanical milling of silicon nanowires and laser ablation of crystalline silicon. Raman spectroscopy study revealed crystalline structure of the fabricated silicon nanoparticles. The properties of the produced nanoparticles indicate their high potential in biophotonics.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] D. Zhang, B. Gökce, S. Barcikowski, Laser synthesis and processing of colloids: fundamentals and applications, Chem. Rev. 117 (2017) 3990-4103.

DOI: 10.1021/acs.chemrev.6b00468

Google Scholar

[2] M.B. Gongalsky, L.A. Osminkina, A. Pereira, et al., Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging, Sci. Rep. 6 (2016) 24732.

DOI: 10.1038/srep24732

Google Scholar

[3] D. Rioux, M. Laferriere, A. Douplik, et al., Silicon nanoparticles produced by femtosecond laser ablation in water as novel contamination-free photosensitizers, J. Biomed. Opt. 142 (2009) 021010.

DOI: 10.1117/1.3086608

Google Scholar

[4] S.V. Zabotnov, F.V. Kashaev, D.V. Shuleiko, et al., Silicon nanoparticles as contrast agents in the methods of optical biomedical diagnostics, Quantum Electron. 47 (2017) 638-646.

DOI: 10.1070/qel16380

Google Scholar

[5] A. Al-Kattan, V.P. Nirwan, A. Popov, et al., Recent advances in laser-ablative synthesis of bare Au and Si nanoparticles and assessment of their prospects for tissue engineering applications, Int. J. Mol. Sci. 19 (2018) 1563.

DOI: 10.3390/ijms19061563

Google Scholar

[6] O.I. Ksenofontova, A.V. Vasin, V.V. Egorov, et al., Porous silicon and its applications in biology and medicine, Tech. Phys. 59 (2014) 66-77.

Google Scholar

[7] J.-H. Park, L. Gu, G. von Maltzahn, et al., Biodegradable luminescent porous silicon nanoparticles for in vivo applications, Nat. Mater. 8 (2009) 331-336.

DOI: 10.1038/nmat2398

Google Scholar

[8] P.A. Perminov, I.O. Dzhun, A.A. Ezhov, et al., Creation of silicon nanocrystals using the laser ablation in liquid, Las. Phys. 21 (2011) 801-804.

DOI: 10.1134/s1054660x11080020

Google Scholar

[9] S.V. Zabotnov, D.A. Kurakina, F.V. Kashaev, et al., Structural and optical properties of nanoparticles formed by laser ablation of porous silicon in liquids: Perspectives in biophotonics, Quantum Electron. 50 (2020) 69-75.

DOI: 10.1070/qel17208

Google Scholar

[10] V.A. Sivakov, G. Brönstrup, B. Pecz, et al., Realization of vertical and zigzag single crystalline silicon nanowire architectures, J. Phys. Chem. C 114 (2010) 3798-3803.

DOI: 10.1021/jp909946x

Google Scholar

[11] I.N. Saraeva, S.I. Kudryashov, A.A. Rudenko, et al., Effect of fs/ps laser pulsewidth on ablation of metals and silicon in air and liquids, and on their nanoparticle yields, Appl. Surf. Sci. 470 (2019) 1018-1034.

DOI: 10.1016/j.apsusc.2018.11.199

Google Scholar

[12] L.A. Osminkina, V.A. Sivakov, G.A. Mysov, et al., Nanoparticles prepared from porous silicon nanowires for bio-imaging and sonodynamic therapy, Nanoscale Res. Lett. 9 (2014) 463.

DOI: 10.1186/1556-276x-9-463

Google Scholar

[13] S.V. Zabotnov, M.M. Kholodov, V.A. Georgobiani, et al., Photon lifetime correlated increase of Raman scattering and third-harmonic generation in silicon nanowire arrays, Las. Phys. Lett. 13 (2016) 035902.

DOI: 10.1088/1612-2011/13/3/035902

Google Scholar

[14] H. Gebavi, D. Ristić, N. Baran, et al., Silicon nanowires as sensory material for surface-enhanced Raman spectroscopy, Silicon 11 (2019) 1151-1157.

DOI: 10.1007/s12633-018-9906-0

Google Scholar

[15] R. Ghosh, P.K. Giri, K. Imakita and M. Fujii, Origin of visible and near-infrared photoluminescence from chemically etched Si nanowires decorated with arbitrarily shaped Si nanocrystals, Nanotechnology 25 (2014) 045703.

DOI: 10.1088/0957-4484/25/4/045703

Google Scholar

[16] R.-P. Wang, G.-W. Zhou, Y.-L. Liu, et al., Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects, Phys. Rev. B 61 (2000) 16827-16832.

DOI: 10.1103/physrevb.61.16827

Google Scholar

[17] S.V. Zabotnov, A.V. Kolchin, F.V. Kashaev, et al., Structural analysis of nanoparticles formed via laser ablation of porous silicon and silicon microparticles in water, Tech. Phys. Lett. 45 (2019) 1085-1088.

DOI: 10.1134/s1063785019110142

Google Scholar