Size Effect on Optical Properties of Silicon Dioxide Hollow Particles

Article Preview

Abstract:

The optical properties of silicon dioxide hollow particles with different size were investigated in UV/visible/near-IR region, as well as X-ray photoelectron spectra were analyzed. Synthesis of SiO2 hollow particles was carried out using a template method. It was established that hollow particle reflectance lower than bulk microparticles. Absorptance in the red and near infrared spectral ranges increases with decreasing size of hollow particles, but in the UV-region conversely. This is due to different absorption centers.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 312)

Pages:

26-31

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.L. Griscom, The Physics and Technology of Amorphous SiO2. New York:Plenum Press, - (1988).

Google Scholar

[2] A.F. Holleman, E. Wiberg, Inorganic Chemistry, San Diego: Academic Press, ISBN 0-12- 352651-5, (2001).

Google Scholar

[3] Jutzi Peter, Schubert Ulrich. Silicon chemistry: from the atom to extended systems. WileyVCH. ISBN 3-527-30647-1, (2003).

Google Scholar

[4] ASTM E490 - 00a Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables, (2005).

DOI: 10.1520/e0490-00ar19

Google Scholar

[5] ASTM E903 – 96 Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres. (2005).

DOI: 10.1520/e0903

Google Scholar

[6] A.F. Zatsepina, V.S. Kortova, D.Y. Biryukova, Electron-emission activity of defects in surface layers of crystalline and vitreous silica. Radiat Eff. Defects Solids. 157 (2002) 595-601.

DOI: 10.1080/10420150215765

Google Scholar

[7] R. Boscaino, M. Cannas, F.M. Gelardi, M. Leone, ESR and PL centers induced by gamma rays in silica. Nucl. Instr. and Meth. B. 116 (1996) 373-377.

DOI: 10.1016/0168-583x(96)00073-0

Google Scholar

[8] L. Skuja, Optical active oxygen-deficiency-related centers in amorphous silicon dioxide. J. Non-Cryst. Solids. 239 (1998)16-48.

DOI: 10.1016/s0022-3093(98)00720-0

Google Scholar

[9] L. Vaccaro, Bright A. Morana, V. Radzig, M. Cannas, Visible Luminescence in Silica Nanoparticles. J. Phys. Chem. C. 115 (2011) 19476-19481.

DOI: 10.1021/jp204350u

Google Scholar

[10] H. Nishikawa, E. Watanade, D. Ito, Y. Ohki, Kinetics of enhanced photogeneration of E centers in oxygen-deficient silica. J. Non-Cryst. Solids. 179 (1994) 179-184.

DOI: 10.1016/0022-3093(94)90695-5

Google Scholar

[11] S.T. Pantelides, Z.-Y. Lu, C. Nicklaw, T. Bakos, S.N. Rashkeev, D.M. Fleetwood, R.D. Schrimpf, The E' center and oxygen vacancies in SiO2. J. Non-Cryst. Solids. 354 (2008) 217-223.

DOI: 10.1016/j.jnoncrysol.2007.08.080

Google Scholar

[12] J.R. Chavez, S.P. Kara, K. Vahneusden, C.P. Brothers, R.D. Pugh, B.K. Singaraju, R.A.B. Devine Microscopic structure of the center in amorphous SiO2: a first principles quantum mechanical investigation. J. IEEE Trans Nucl. Sci. 44 (1997) 1799-1803.

DOI: 10.1109/23.658945

Google Scholar

[13] M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, D. Johnson, On the aging of oxygen plasma-treated polydimethylsiloxane surfaces. J. Colloid. Interf. Sci. 137 (1990) 11-24.

DOI: 10.1016/0021-9797(90)90038-p

Google Scholar

[14] A. Thøgersen, J.H. Selj, & E.S. Marstein, Oxidation Effects on Graded Porous Silicon Anti-Reflection Coatings. J. Electrochem. Soc., 159(5) (2012) D276–D281.

DOI: 10.1149/2.jes113659

Google Scholar

[15] R. Zhang, Structural and optical properties of grey and porous SiO2 nanoparticles, J. Physica B: Condensed Matter, 553 (2019) 23-25.

DOI: 10.1016/j.physb.2018.10.027

Google Scholar

[16] L. Khriachtchev, T. Nikitin, C.J. Oton, R. Velagapudi, J. Sainio, J. Lahtinen, S. Novikov, Optical properties of silicon nanocrystals in silica: Results from spectral filtering effect, m-line technique, and x-ray photoelectron spectroscopy, J. Appl. Phys., 104 (2008), 104316-9.

DOI: 10.1063/1.3010304

Google Scholar