Investigation of the Mechanism of Electric Conductivity of Strontium Bismuthate Sr6Bi2O11

Article Preview

Abstract:

The paper presents data on the temperature dependence of the conductivity of strontium bismuthate Sr6Bi2O11. It is shown that the temperature dependence of conductivity cannot be described in the framework of existing models. It was found that at a temperature of about 400 K a change in the radius of localization of the charge carrier is observed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 312)

Pages:

32-37

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.S. Shtarev, A.V. Shtareva, V.K. Ryabchuk, A.V. Rudakova, N. Serpone. Considerations of Trends in Heterogeneous Photocatalysis. Correlations between conduction and valence band energies with bandgap energies of various photocatalysts. ChemCatChem. 11 (2019) 3534–3541.

DOI: 10.1002/cctc.201900439

Google Scholar

[2] Z. Shan, Y. Xia, Y. Yang, H. Ding, F. Huang. Preparation and photocatalytic activity of novel efficient photocatalyst Sr2Bi2O5. Materials Letters 63 (2009) 75–77.

DOI: 10.1016/j.matlet.2008.09.009

Google Scholar

[3] Y. Yingchun, W. Xinzhi, Q. Jing. Preparation and photocatalytic degradation of malachite green by photocatalyst SrBi4O7 under visible light irradiation. Applied Mechanics and Materials. 522-524 (2014) 411-415.

DOI: 10.4028/www.scientific.net/amm.522-524.411

Google Scholar

[4] J.W. Tang, Z.G. Zou, J.H. Ye. Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew. Chem. Int. Ed. 43 (2004) 4463-4466.

DOI: 10.1002/anie.200353594

Google Scholar

[5] D.S. Shtarev, A.V. Shtareva, V.K. Ryabchuk, A.V. Rudakova, P.D. Murzin, M.S. Molokeev, A.V. Koroleva, A.I. Blokh, and N. Serpone. Solid-State Synthesis, Characterization, UV-Induced Coloration and Photocatalytic Activity – The Sr6Bi2O11, Sr3Bi2O6 and Sr2Bi2O5 Bismuthates. Catalysis Today. 340 (2020) 70–85.

DOI: 10.1016/j.cattod.2018.09.035

Google Scholar

[6] X. Hu, C. Hu, J. Qu. Photocatalytic decomposition of acetaldehyde and Escherichia coli using NiO/SrBi2O4 under visible light irradiation. Applied Catalysis B: Environmental. 69 (2006) 17–23.

DOI: 10.1016/j.apcatb.2006.05.008

Google Scholar

[7] J. Ge, W.-J. Yin, Y. Yan. Solution-Processed Nb-Substituted BaBiO3 Double Perovskite Thin Films for Photoelectrochemical Water Reduction. Chemistry of Materials. 30(3) (2018) 1017-1031.

DOI: 10.1021/acs.chemmater.7b04880

Google Scholar

[8] D.S. Shtarev, A.V. Shtareva, R. Kevorkyants, A.V. Rudakova, M.S. Molokeev,e T.V. Bakiev, K.M. Bulanin, V.K. Ryabchuk, and N. Serpone. Materials Synthesis, Characterization and DFT Calculations of the Visible-Light-Active Perovskite-like Barium Bismuthate Ba1.264(4)Bi1.971(4)O4 Photocatalyst. Journal of Materials Chemistry. 8 (2020) 3509-3519.

DOI: 10.1039/c9tc06457e

Google Scholar

[9] Y. Wang, Y. He, T. Li, J. Cai, M. Luo, L. Zhao. Photocatalytic degradation of methylene blue on CaBi6O10/Bi2O3 composites under visible light. Chemical Engineering Journal. 189–190 (2012) 473-481.

DOI: 10.1016/j.cej.2012.02.079

Google Scholar

[10] F. Sieland, N.A.-T. Duong, J. Schneider, D.W. Bahnemann. Influence of Inorganic Additives on the Photocatalytic Removal of Nitric Oxide and on the Charge Carrier Dynamics of TiO2 Powders. Journal of Photochemistry and Photobiology A: Chemistry. 366. (2018) 142-151.

DOI: 10.1016/j.jphotochem.2018.01.036

Google Scholar

[11] D.S. Shtarev, A.V. Shtareva, V.Ju. Mikhailovski, E.O. Nashchochin. On the influence of strontium carbonate on improving the photo-catalytic activity of strontium bismuthate Sr6Bi2O11. Catalysis Today. 335 (2019) 492-501.

DOI: 10.1016/j.cattod.2019.02.016

Google Scholar

[12] D.S. Shtarev, A.V. Shtareva, M.S. Molokeev, A.V. Syuy, E.O. Nashchochin. About Photocatalytic Properties of some Heterostructures Based on Strontium Bismuthate. Key Engineering Materials. 806 (2019) 161-166.

DOI: 10.4028/www.scientific.net/kem.806.161

Google Scholar

[13] E.O. Nashchochin, D.S. Shtarev, A.V. Shtareva, A.V. Syuy. Strontium Bismuthates Sr2Bi2O5 and Sr6Bi2O11: Temperature Dependencies of Urbach Energy and Location of «Urbach Focus». Defect and Diffusion Forum. 386 (2018) 181-185.

DOI: 10.4028/www.scientific.net/ddf.386.181

Google Scholar

[14] B. Hallstedt, L.J. Gaucklerb. Revision of the thermodynamic descriptions of the Cu–O, Ag–O, Ag–Cu–O, Bi–Sr–O, Bi–Ca–O, Bi–Cu–O, Sr–Cu–O, Ca–Cu–O and Sr–Ca–Cu–O systems. Computer Coupling of Phase Diagrams and Thermochemistry. 27 (2003) 177-191.

DOI: 10.1016/s0364-5916(03)00050-6

Google Scholar

[15] A.L. Efros, B.I. Shklovskii. Coulomb gap and low temperature conductivity of disordered systems. Journal of Physics C: Solid State Physics. 8(4) (1975) L49-L51.

DOI: 10.1088/0022-3719/8/4/003

Google Scholar

[16] D.N. Tsigankov, A.L. Efros. Variable Range Hopping in Two-Dimensional Systems of Interacting Electrons. Physical Review Letters. 88 (17) (2002) 176602.

DOI: 10.1103/physrevlett.88.176602

Google Scholar

[17] R.S. Roth, C.J. Rawn, B. P. Burton, F. Beech. Phase Equilibria and Crystal Chemistry in Portions of the System SrO-CaO-Bi2O3-CuO, Part II—The System SrO-Bi2O3-CuO. J. Res. Natl. Inst. Stand. Technol. 95(3) (1990) 291-335.

DOI: 10.6028/jres.095.029

Google Scholar