[1]
W. Gofton, P.E. Beaule, Serum metal ions with a titanium modular neck total hipreplacement system, J. Arthroplasty 30 (2015) 1781-1786.
DOI: 10.1016/j.arth.2015.04.040
Google Scholar
[2]
M. Meftah, A.M. Haleem, M.B. Burn, K.M. Smith, S.J. Incavo, Early corrosion-related failure of the rejuvenate modular total hip replacement, J. Bone Joint Surg. Am. 96 (2014) 481-487.
DOI: 10.2106/jbjs.m.00979
Google Scholar
[3]
J. Zhao, L. Bowman, X. Zhang, V. Vallyathan, S.H. Young, V. Castranova, M. Ding, Titanium dioxide (TiO2) nanoparticles induce JB6 cell apoptosis through activation of the caspase-8/bid and mitochondrial pathways, J. Toxicol. Environ. Heal. Part A Curr. Issues 72 (2009) 1141-1149.
DOI: 10.1080/15287390903091764
Google Scholar
[4]
G. Oberdörster, Pulmonary effects of inhaled ultrafine particles, Int. Arch. Occup. Environ. Health 74 (2001) 1-8.
Google Scholar
[5]
H. Shi, R. Magaye, V. Castranova, J. Zhao, Titanium dioxide nanoparticles: a review of current toxicological data, Cosm. Res. 10 (2013) 1-33.
DOI: 10.1186/1743-8977-10-15
Google Scholar
[6]
I. Swiatkowska, N. Martin, A. J. Hart, Blood titanium level as a biomarker of orthopaedic implant wear, J. Trace Elem. Med. Biol. 53 (2019) 120-128.
DOI: 10.1016/j.jtemb.2019.02.013
Google Scholar
[7]
C. Schlundt, H. Schell, S.B. Goodman, G. Vunjak-Novakovic, G. Duda, K. Schmidt-Bleek, Immune modulation as a therapeutic strategy in bone regeneration, J. Exp. Orthop. 2 (2015) 1-10.
DOI: 10.1186/s40634-014-0017-6
Google Scholar
[8]
S.A. Hienz, S. Paliwal, S. Ivanovski, Mechanisms of Bone Resorption in Periodontitis, J. Immunol. Res. (2015) 615486.
Google Scholar
[9]
A. Wilensky, H. Segev, G. Mizraji, Y. Shaul, T. Capucha, M. Shacham, A. H. Hovav, Dendritic cells and their role in periodontal disease, Oral. Dis. 20 (2014) 119-126.
DOI: 10.1111/odi.12122
Google Scholar
[10]
C.M. Stanford, Surface modification of biomedical and dental implants and the processes of inflammation, wound healing and bone formation, Int. J. Mol. Sci. 11 (2010) 354-369.
DOI: 10.3390/ijms11010354
Google Scholar
[11]
W. Xiao, G. Dong, S. Pacios, M. Alnammary, L.A. Barger, Y. Wang , Y. Wu , D.T. Graves. FOXO1 deletion reduces dendritic cell function and enhances susceptibility to periodontitis, Am. J. Pathol. 185 (2015) 1085-93.
DOI: 10.1016/j.ajpath.2014.12.006
Google Scholar
[12]
O. Lapérine, C. Blin-Wakkach, J. Guicheux, S. Beck-Cormier, P. Lesclous, Dendritic-cell-derived osteoclasts: a new game changer in bone-resorption-associated diseases, Drug Discov. Today 21 (2016) 1345-1354.
DOI: 10.1016/j.drudis.2016.04.022
Google Scholar
[13]
S. Cachinho, F. Pu, J. Hunt, Cytokine secretion from human peripheral blood mononuclear cells cultured in vitro with metal particles, J. Biomed. Mater. Res. 101 A (2013) 1201-1209.
DOI: 10.1002/jbm.a.34410
Google Scholar
[14]
A.N. Minaev, S.V. Gnedenkov, S.L. Sinebryukhov, D.V. Mashtalyar, V.S. Egorkin, A.S. Gnedenkov, K.V. Nadaraia. Functional Plasma Electrolytic Oxidation Coatings for Offshore Structures. Proc. Int. Offshore Polar Eng. Conf. 2014 (2014) 418-422.
DOI: 10.4028/www.scientific.net/ssp.213.149
Google Scholar
[15]
S. Gnedenkov, S. Sinebryukhov, A. Minaev, D. Mashtalyar, V. Egorkin, A. Gnedenkov, K. Nadaraia. Application of plasma electrolytic oxidation for repair of details of marine technique. Proc. Int. Offshore Polar Eng. Conf. 2015 (2015) 38-43.
DOI: 10.1016/j.vacuum.2015.02.004
Google Scholar