[1]
I. R. Harris and G. W. Jewell, Rare-earth magnets: properties, processing and applications in: J.A. Kilner (Edt), S.J. Skinner (Edt), S.J.C. Irvine (Edt), P.P. Edwards (Edt), Functional Materials for Sustainable Energy Applications, Woodhead Publishing, Cambridge, 2012, pp.600-639.
DOI: 10.1533/9780857096371.4.600
Google Scholar
[2]
C. W. Ayers, Evaluation of 2004 Toyota Prius Hybrid Electric Drive System Interim Report, (2004).
DOI: 10.2172/885776
Google Scholar
[3]
A. Bensalah, M. A. Benhamida, G. Barakat, and Y. Amara, Line-start permanent magnet motors with variable coil turns, in 2018 XIII International Conference on Electrical Machines (ICEM) (2018) 2205.
DOI: 10.1109/icelmach.2018.8507193
Google Scholar
[4]
N. Wang, B. J. Bowers, and D. P. Arnold, Wax-bonded NdFeB micromagnets for microelec- tromechanical systems applications, J Appl Phys 103 (2008) 07E109-1-07E109-3.
DOI: 10.1063/1.2830532
Google Scholar
[5]
A. N. D. E. K. Papynov, I. A. Tkachenko, I. Yu. Buravlev, V. Yu. Mayorov, E. B. Merkulov, A. N. Fedorets, A. V. Ognev, A. S. Samardak, A. S. Drenin, I. G. Tananaev, Synthesis and Sorption Characteristics of Magnetic Materials Based on Cobalt Oxides and their Reduced Forms, Russian Journal of Inorganic Chemistry 65 (2020) 820-828.
DOI: 10.1134/s0036023620060157
Google Scholar
[6]
D. Z. Sam Zhang, Advances in magnetic materials: processing, properties, and performance, CRC Press, Boca raton, (2017).
Google Scholar
[7]
J. F. Herbst, R2Fe14B materials: Intrinsic properties and technological aspects, Reviews of Modern Physics 63 (1991) 819-898.
Google Scholar
[8]
J. M. D. Coey, Permanent magnet applications, J Magn Magn Mater 248 (2002) 441-456.
Google Scholar
[9]
D. Brown, B.-M. Ma, and Z. Chen, Developments in the processing and properties of NdFeB-type permanent magnets, J Magn Magn Mater 248 (2002) 432-440.
DOI: 10.1016/s0304-8853(02)00334-7
Google Scholar
[10]
O. Gutfleisch, M. A. Willard, E. Brück, C. H. Chen, S. G. Sankar, and J. P. Liu, Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient Advanced Materials, 23 (2011) 821-842.
DOI: 10.1002/adma.201002180
Google Scholar
[11]
J. J. Went, G. W. Rathenau, E. W. Gorter, and G. W. van Oosterhout, Hexagonal iron-oxide compounds as permanent-magnet materials, Physical Review 86 (1952) 424-425.
DOI: 10.1103/physrev.86.424.2
Google Scholar
[12]
K. Strnat, G. Hoffer, J. Olson, W. Ostertag, and J. J. Becker, A Family of New Cobalt‐Base Permanent Magnet Materials, J Appl Phys 38 (1967) 1001-1002.
DOI: 10.1063/1.1709459
Google Scholar
[13]
J. J. Croat, J. F. Herbst, R. W. Lee, and F. E. Pinkerton, Pr‐Fe and Nd‐Fe‐based materials: A new class of high‐performance permanent magnets, J Appl Phys 55 (1984) 2078-2082.
DOI: 10.1063/1.333571
Google Scholar
[14]
M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, and Y. Matsuura, New material for permanent magnets on a base of Nd and Fe, J Appl Phys 55 (1984) 2083-2087.
DOI: 10.1063/1.333572
Google Scholar
[15]
K. Strnat, The recent development of permanent magnet materials containing rare earth metals, IEEE Trans. Magn. 6 (1970) 182-190.
DOI: 10.1109/tmag.1970.1066743
Google Scholar
[16]
J. Smit and H. P. J. Wijn, Ferrites: physical properties of ferrimagnetic oxides in relation to their technical applications, N.V. Philips Gloeilampenfabrieken, (1959).
Google Scholar
[17]
K. H. J. Buschow, A. M. van Diepen, and H. W. de Wijn, Crystal-field anisotropy of Sm3+ in SmCo5 Solid State Communications 15 (1974) 903-906.
DOI: 10.1016/0038-1098(74)90690-5
Google Scholar
[18]
Y. Matsuura, Recent development of Nd-Fe-B sintered magnets and their applications J Magn Magn Mater 303 (2006) 344-347.
Google Scholar
[19]
J. M. D. Coey, Hard Magnetic Materials: A Perspective, IEEE Trans. Magn 47 (2011) 4671-4681.
DOI: 10.1109/tmag.2011.2166975
Google Scholar
[20]
R. Skomski and J. M. D. Coey, Giant energy product in nanostructured two-phase magnets Phys Rev B 48 (1993) 15812-15816.
DOI: 10.1103/physrevb.48.15812
Google Scholar
[21]
Z. W. Liu and H. A. Davies, Irreversible magnetic losses for melt-spun nanocrystalline Nd/Pr–(Dy)–Fe/Co–B ribbons, Journal of Physics D: Applied Physics 40 (2007) 315-319.
DOI: 10.1088/0022-3727/40/2/005
Google Scholar
[22]
N. Poudyal and J. Ping Liu, Advances in nanostructured permanent magnets Research, Journal of Physics D: Applied Physics 46 (2012) 043001-043023.
DOI: 10.1088/0022-3727/46/4/043001
Google Scholar
[23]
K. Elkins, D. Li, N. Poudyal, V. Nandwana, Z. Jin, K. Chen, and J. P. Liu, Monodisperse face-centred tetragonal FePt nanoparticles with giant coercivity, Journal of Physics D: Applied Physics 38 (2005) 2306–2309.
DOI: 10.1088/0022-3727/38/14/003
Google Scholar
[24]
C. N. Chinnasamy, J. Y. Huang, L. H. Lewis, B. Latha, C. Vittoria, and V. G. Harris, Direct chemical synthesis of high coercivity air-stable SmCo nanoblades, Appl Phys Lett 93 (2008) 032505-1-032505-3.
DOI: 10.1063/1.2963034
Google Scholar
[25]
Y. Haik, J. Chatterjee, and C. Jen Chen, Synthesis and Stabilization of Fe–Nd–B Nanoparticles for Biomedical Applications, Journal of Nanoparticle Research 7 (2005) 675–679.
DOI: 10.1007/s11051-005-5467-4
Google Scholar
[26]
C. W. Kim, Y. H. Kim, H. G. Cha, and Y. S. Kang, Exchange-coupling effect of Nd2Fe14B/FeCo nanocomposite by colloidal method, Molecular Crystals and Liquid Crystals 464 (2007) 583-589.
DOI: 10.1080/15421400601028435
Google Scholar
[27]
P. K. Deheri, V. Swaminathan, S. D. Bhame, Z. Liu, and R. V. Ramanujan, Sol-gel based chemical synthesis of Nd2Fe14B hard magnetic nanoparticles, Chemistry of Materials 22 (2010) 6509-6517.
DOI: 10.1021/cm103148n
Google Scholar
[28]
X. Tan, H. Parmar, Y. Zhong, V. Chaudhary, and R. V. Ramanujan, Effect of Dy substitution on the microstructure and magnetic properties of high (BH)max Nd-Dy-Fe-Co-B nanoparticles prepared by microwave processing, J Magn Magn Mater 471 (2019) 278-285.
DOI: 10.1016/j.jmmm.2018.09.017
Google Scholar
[29]
M. P. Pechini, U. S. Patent 3330697 (1967).
Google Scholar