Preparation and Structure of Oxide and Reduced Nd(Fe1-xCox)B Nanoparticles

Article Preview

Abstract:

Nanoparticles of Nd(Fe1-xCox)B with Co concentrations ranging from x = 0 to 0.5 were prepared using a modified Pechini-type sol-gel method. We have shown the influence of Co on the morphology and size of nanoparticles, as well as on elements distribution in nanostructures. It was found that nanoparticles with increased content of Fe and Co were formed during the synthesis process. There was an interdiffusion of Nd and Fe, both after oxidation and after reduction. This study helped to define promising “bottom-up” approaches for the fabrication of nanomaterials for the advanced Nd(Fe1-xCox)B permanent magnets by chemical synthesis.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 312)

Pages:

288-294

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. R. Harris and G. W. Jewell, Rare-earth magnets: properties, processing and applications in: J.A. Kilner (Edt), S.J. Skinner (Edt), S.J.C. Irvine (Edt), P.P. Edwards (Edt), Functional Materials for Sustainable Energy Applications, Woodhead Publishing, Cambridge, 2012, pp.600-639.

DOI: 10.1533/9780857096371.4.600

Google Scholar

[2] C. W. Ayers, Evaluation of 2004 Toyota Prius Hybrid Electric Drive System Interim Report, (2004).

DOI: 10.2172/885776

Google Scholar

[3] A. Bensalah, M. A. Benhamida, G. Barakat, and Y. Amara, Line-start permanent magnet motors with variable coil turns, in 2018 XIII International Conference on Electrical Machines (ICEM) (2018) 2205.

DOI: 10.1109/icelmach.2018.8507193

Google Scholar

[4] N. Wang, B. J. Bowers, and D. P. Arnold, Wax-bonded NdFeB micromagnets for microelec- tromechanical systems applications, J Appl Phys 103 (2008) 07E109-1-07E109-3.

DOI: 10.1063/1.2830532

Google Scholar

[5] A. N. D. E. K. Papynov, I. A. Tkachenko, I. Yu. Buravlev, V. Yu. Mayorov, E. B. Merkulov, A. N. Fedorets, A. V. Ognev, A. S. Samardak, A. S. Drenin, I. G. Tananaev, Synthesis and Sorption Characteristics of Magnetic Materials Based on Cobalt Oxides and their Reduced Forms, Russian Journal of Inorganic Chemistry 65 (2020) 820-828.

DOI: 10.1134/s0036023620060157

Google Scholar

[6] D. Z. Sam Zhang, Advances in magnetic materials: processing, properties, and performance, CRC Press, Boca raton, (2017).

Google Scholar

[7] J. F. Herbst, R2Fe14B materials: Intrinsic properties and technological aspects, Reviews of Modern Physics 63 (1991) 819-898.

Google Scholar

[8] J. M. D. Coey, Permanent magnet applications, J Magn Magn Mater 248 (2002) 441-456.

Google Scholar

[9] D. Brown, B.-M. Ma, and Z. Chen, Developments in the processing and properties of NdFeB-type permanent magnets, J Magn Magn Mater 248 (2002) 432-440.

DOI: 10.1016/s0304-8853(02)00334-7

Google Scholar

[10] O. Gutfleisch, M. A. Willard, E. Brück, C. H. Chen, S. G. Sankar, and J. P. Liu, Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient Advanced Materials, 23 (2011) 821-842.

DOI: 10.1002/adma.201002180

Google Scholar

[11] J. J. Went, G. W. Rathenau, E. W. Gorter, and G. W. van Oosterhout, Hexagonal iron-oxide compounds as permanent-magnet materials, Physical Review 86 (1952) 424-425.

DOI: 10.1103/physrev.86.424.2

Google Scholar

[12] K. Strnat, G. Hoffer, J. Olson, W. Ostertag, and J. J. Becker, A Family of New Cobalt‐Base Permanent Magnet Materials, J Appl Phys 38 (1967) 1001-1002.

DOI: 10.1063/1.1709459

Google Scholar

[13] J. J. Croat, J. F. Herbst, R. W. Lee, and F. E. Pinkerton, Pr‐Fe and Nd‐Fe‐based materials: A new class of high‐performance permanent magnets, J Appl Phys 55 (1984) 2078-2082.

DOI: 10.1063/1.333571

Google Scholar

[14] M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, and Y. Matsuura, New material for permanent magnets on a base of Nd and Fe, J Appl Phys 55 (1984) 2083-2087.

DOI: 10.1063/1.333572

Google Scholar

[15] K. Strnat, The recent development of permanent magnet materials containing rare earth metals, IEEE Trans. Magn. 6 (1970) 182-190.

DOI: 10.1109/tmag.1970.1066743

Google Scholar

[16] J. Smit and H. P. J. Wijn, Ferrites: physical properties of ferrimagnetic oxides in relation to their technical applications, N.V. Philips Gloeilampenfabrieken, (1959).

Google Scholar

[17] K. H. J. Buschow, A. M. van Diepen, and H. W. de Wijn, Crystal-field anisotropy of Sm3+ in SmCo5 Solid State Communications 15 (1974) 903-906.

DOI: 10.1016/0038-1098(74)90690-5

Google Scholar

[18] Y. Matsuura, Recent development of Nd-Fe-B sintered magnets and their applications J Magn Magn Mater 303 (2006) 344-347.

Google Scholar

[19] J. M. D. Coey, Hard Magnetic Materials: A Perspective, IEEE Trans. Magn 47 (2011) 4671-4681.

DOI: 10.1109/tmag.2011.2166975

Google Scholar

[20] R. Skomski and J. M. D. Coey, Giant energy product in nanostructured two-phase magnets Phys Rev B 48 (1993) 15812-15816.

DOI: 10.1103/physrevb.48.15812

Google Scholar

[21] Z. W. Liu and H. A. Davies, Irreversible magnetic losses for melt-spun nanocrystalline Nd/Pr–(Dy)–Fe/Co–B ribbons, Journal of Physics D: Applied Physics 40 (2007) 315-319.

DOI: 10.1088/0022-3727/40/2/005

Google Scholar

[22] N. Poudyal and J. Ping Liu, Advances in nanostructured permanent magnets Research, Journal of Physics D: Applied Physics 46 (2012) 043001-043023.

DOI: 10.1088/0022-3727/46/4/043001

Google Scholar

[23] K. Elkins, D. Li, N. Poudyal, V. Nandwana, Z. Jin, K. Chen, and J. P. Liu, Monodisperse face-centred tetragonal FePt nanoparticles with giant coercivity, Journal of Physics D: Applied Physics 38 (2005) 2306–2309.

DOI: 10.1088/0022-3727/38/14/003

Google Scholar

[24] C. N. Chinnasamy, J. Y. Huang, L. H. Lewis, B. Latha, C. Vittoria, and V. G. Harris, Direct chemical synthesis of high coercivity air-stable SmCo nanoblades, Appl Phys Lett 93 (2008) 032505-1-032505-3.

DOI: 10.1063/1.2963034

Google Scholar

[25] Y. Haik, J. Chatterjee, and C. Jen Chen, Synthesis and Stabilization of Fe–Nd–B Nanoparticles for Biomedical Applications, Journal of Nanoparticle Research 7 (2005) 675–679.

DOI: 10.1007/s11051-005-5467-4

Google Scholar

[26] C. W. Kim, Y. H. Kim, H. G. Cha, and Y. S. Kang, Exchange-coupling effect of Nd2Fe14B/FeCo nanocomposite by colloidal method, Molecular Crystals and Liquid Crystals 464 (2007) 583-589.

DOI: 10.1080/15421400601028435

Google Scholar

[27] P. K. Deheri, V. Swaminathan, S. D. Bhame, Z. Liu, and R. V. Ramanujan, Sol-gel based chemical synthesis of Nd2Fe14B hard magnetic nanoparticles, Chemistry of Materials 22 (2010) 6509-6517.

DOI: 10.1021/cm103148n

Google Scholar

[28] X. Tan, H. Parmar, Y. Zhong, V. Chaudhary, and R. V. Ramanujan, Effect of Dy substitution on the microstructure and magnetic properties of high (BH)max Nd-Dy-Fe-Co-B nanoparticles prepared by microwave processing, J Magn Magn Mater 471 (2019) 278-285.

DOI: 10.1016/j.jmmm.2018.09.017

Google Scholar

[29] M. P. Pechini, U. S. Patent 3330697 (1967).

Google Scholar