Formation of Structural-Phase State in a Cobalt-Chromium-Molybdenum Alloy by Selective Laser Melting

Article Preview

Abstract:

Heat resistant cobalt-based alloys have found a specific niche in the present-day mechanical engineering due to their unique properties. To begin with, cobalt-based alloys are used as corrosion, heat and wear resistant materials intended for aggressive environments and operation at extreme temperatures, e.g. blades, nozzles, swirlers, rings and other elements of turbines and internal combustion engines. Traditional molding methods applied in the mechanical engineering fail to provide necessary operational and technological characteristics of aforementioned machine parts. Owing to selective laser melting it is possible to reduce a production time and manufacturing costs for machine elements with a complex physical configuration and generate an alloy with an extraordinary structure, which is not found in traditionally combined compounds. A structure of cobalt exists in two crystal modifications: a hexagonal close-packed epsilon phase, a low-temperature phase and a face-centered cubic lattice gamma phase, a high-temperature phase. The alloy hardness is directly related to an amount of a low-temperature phase. The laser melting shortens a laser beam impact time on a powder composition due to a higher power and laser travelling speed. A high value of heat conductivity seems to be the reason for rapid solidification and cooling, which, in their turn, increase a percent of an alpha-martensite phase in an alloy and improve the hardness and wear resistance of machine parts. The reported paper summarizes studies aimed at the development of a stable phase structure three-component alloy (Сo-66 mass % Cr-6 mass % Mo) based on the cobalt-chromium-molybdenum system and mixed up via selective laser melting.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 313)

Pages:

50-58

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yu. P. Sharkeev, A. Yu. Eroshenko, Zh. G. Kovalevskaya, A. A. Saprykin, E. A. Ibragimov, I. A. Glukhov, M. A. Chimich, P. V. Uvarkin, E. V. Babakova, Phase Composition and Microstructure of Ti-Nb Alloy Produced by Selective Laser Melting, IOP Conference Series: Materials Science and Engineering, 2016, 140(1), 012020.

DOI: 10.1088/1757-899x/140/1/012020

Google Scholar

[2] A. A. Saprykin, Yu. P. Sharkeev, E. A. Ibragimov, E. V. Babakova, Zh. G. Kovalevskaya, A. Yu. Eroshenko, M. A. Khimich, P. V. Uvarkin, I. A. Glukhov, Synthesizing conditions and structural-phase state of Ti-Nb alloy when selective laser melting ECCM 2016, Proceeding of the 17th European Conference on Composite Materials, (2016).

DOI: 10.1007/s11182-016-0790-z

Google Scholar

[3] A. A. Saprykin, N. A. Saprykina, D. V. Dudikhin, S. M. Emelyanenko, Influence of layer-bylayer laser sintering modes on the thickness of sintered layer of cobalt-chromium-molybdenum powder, Advanced Materials Research, 2014, 1040, pp.805-808.

DOI: 10.4028/www.scientific.net/amr.1040.805

Google Scholar

[4] X. Zhou, K. Li, D. Zhang, X. Liu, J. Ma, W. Liu, Z. Shen, Textures formed in a CoCrMo alloy by selective laser melting, J. Alloys Compd, 2015, 631, pp.153-164.

DOI: 10.1016/j.jallcom.2015.01.096

Google Scholar

[5] A. Takaichi, Suyalatu, T. Nakamoto, N. Joko, N. Nomura, Y. Tsutsumi, S. Migita, H. Doi, S. Kurosu, A. Chiba, N. Wakabayashi, Y. Igarashi, T. Hanawa, Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications, J. Mech. Behav. Biomed. Mater., 2013, 21, pp.67-76.

DOI: 10.1016/j.jmbbm.2013.01.021

Google Scholar

[6] M. Zhang, Y. Yang, C. Song, Y. Bai, Z. Xiao, An investigation into the aging behavior of CoCrMo alloys fabricated by selective laser melting, J. Alloys Compd., 2018, 750, 878–886.

DOI: 10.1016/j.jallcom.2018.04.054

Google Scholar

[7] Y. Lu, L. Ren, X. Xu, Y. Yang, S. Wu, J. Luo, M. Yang, L. Liu, D. Zhuang, K. Yang, J. Lin, Effect of Cu on microstructure, mechanical properties, corrosion resistance and cytotoxicity of CoCrW alloy fabricated by selective laser melting, J. Mech. Behav. Biomed. Mater., 2018, 81, pp.130-141.

DOI: 10.1016/j.jmbbm.2018.02.026

Google Scholar

[8] L. Ren, K. Memarzadeh, S. Zhang, Z. Sun, C. Yang, G. Ren, R.P. Allaker, K. Yang, A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties, Mater. Sci. Eng., 2016, 67, pp.461-467.

DOI: 10.1016/j.msec.2016.05.069

Google Scholar

[9] E. Zhang, C. Liu, A new antibacterial Co-Cr-Mo-Cu alloy: Preparation, biocorrosion, mechanical and antibacterial property, Mater. Sci. Eng., 2016, 69, pp.134-143.

DOI: 10.1016/j.msec.2016.05.028

Google Scholar

[10] G. Barucca, E. Santecchia, G. Majni, E. Girardin, E. Bassoli, L. Denti, A. Gatto, L. Iuliano, T. Moskalewicz, P. Mengucci, Structural characterization of biomedical Co-Cr-Mo components produced by direct metal laser sintering, Mater. Sci. Eng., 2015, 48, pp.263-269.

DOI: 10.1016/j.msec.2014.12.009

Google Scholar

[11] A. P. Nazarov, Development of the technological process for manufacturing complex-profile parts and heat-resistant cobalt alloy by selective laser melting: dis. candidate of technical Sciences, Moscow, (2013).

Google Scholar

[12] M. W. Benjamin, W. B. Scott, A. G. Russell, G. C. Linda, M. S. Emanuel, J. C. Michael, Solid free-form fabrication of drug delivery devices, Journal of Controlled Release, 1996, 40, 1–2, pp.77-87.

Google Scholar

[13] I. V. Shishkovsky, Selective laser sintering and synthesis of functional structures: dis. Samara, 2005, 390.

Google Scholar

[14] I. I. Zhuravleva, T. V. Rodchenko, A. L. Petrov, V. I. Shcherbakov, A. I. Snarev, I. V. Shishkovsky, Modeling and studying the properties of gradient filtering elements using the synthesized SLS method, Laser engineering and technology, 2006, pp.419-428.

Google Scholar

[15] I. V. Shishkovskii, I. A. Yadroitsev, I. Yu. Smurov, Selective laser sintering/melting of nitinol– hydroxyapatite composite for medical applications, Powder Metallurgy and Metal Ceramics September, 2011, 50, 5-6, pp.275-283.

DOI: 10.1007/s11106-011-9329-6

Google Scholar

[16] A. P. Nazarov, A. A. Okunkova, Typical samples of products obtained by selective laser sintering, Bulletin of the Saratov state technical University, 1 (67), 3, 2012, pp.76-82.

Google Scholar

[17] http://liat-stankin.ru.

Google Scholar

[18] M. PodrezRadziszewska, K. Haimann, W. Dudziński, M. Morawska-Sołtysik, Characteristic of intermetallic phases in cast dental CoCrMo alloy, Archives of foundry engineering, 10, 3, 2010, pp.51-56.

Google Scholar

[19] C. Suryanarayana, Mechanical alloying and Milling, Progress in Materials Science, 2001, vol. 46, pp.1-184.

Google Scholar

[20] T. F. Grigorieva, A. P. Barinova, N. Z. Lyakhov, Mechanochemical synthesis in metal systems: monograph, Novosibirsk, Parallel, 2008, 309.

Google Scholar

[21] A.J. Saldivar-Garcia, H.F. Lopez, Temperature effects on the lattice constants and crystal structure of a Co-27Cr-5Mo low-carbon alloy, Metallurgical and materials transactions, 2004, pp.2517-2523.

DOI: 10.1007/s11661-006-0232-6

Google Scholar

[22] https://dpva.ru/Guide/GuidePhysics/Length/AtomicRadius/.

Google Scholar

[23] H.F. Ping Huang, Lopez Strain induced ε-martensite in a Co–Cr–Mo alloy: grain size effects, Materials Letters, 39, 1999, pp.244-248.

DOI: 10.1016/s0167-577x(99)00021-x

Google Scholar