Structure and Grain Boundaries of Ultrafine-Grained Nickel after Rolling and Forging at Cryogenic Temperature

Article Preview

Abstract:

The structure and misorientations of grain boundaries of ultrafine-grained nickel subjected to rolling and forging at liquid nitrogen temperature are studied. It is shown that as a result of rolling in UFG nickel obtained by the ECAP the forming of a band fragmented structure with the formation of special twin boundaries Σ3 is observed. An increase in the strain rate (forging) leads to the appearance of localized deformation bands in which the formation of new small grains is observed through dynamic recrystallization. The development of recrystallization results in increase up to 7% in UFG nickel the fraction of special twin boundaries Σ3 which are similar in nature to annealing twins.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 313)

Pages:

31-40

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Mayers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci. 51 (2006) 427-556.

Google Scholar

[2] R.Z. Valiev, Y.Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Fundamentals of superior properties in bulk nanoSPD materials, Mat. Res. Let. 4 (2017) 1-21.

DOI: 10.1080/21663831.2015.1060543

Google Scholar

[3] I.A. Ovid'ko, R.Z. Valiev, Y.T. Zhu, Review on superior strength and enhanced ductility of metallic nanomaterials, Prog. Mat. Sci. 94 (2018) 462-540.

DOI: 10.1016/j.pmatsci.2018.02.002

Google Scholar

[4] K.S. Kumar, H. Van Swygenhoven, S. Suresh, Mechanical behavior of nanocrystalline metals and alloys, Acta Mat. 51 (2003) 5743-5774.

DOI: 10.1016/j.actamat.2003.08.032

Google Scholar

[5] Q. Wei, S. Cheng, K.T. Ramesh, E. Ma, Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: FCC versus BCC metals, Mater. Sci. Eng. A. 381 (2004) 71-79.

DOI: 10.1016/j.msea.2004.03.064

Google Scholar

[6] N. Wang, Z.R. Wang, K.T. Aust, U. Erb, Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique, Mat. Sci. Eng. A. 237 (1997) 150 -158.

DOI: 10.1016/s0921-5093(97)00124-x

Google Scholar

[7] J. May, H.W. Hoppel, M. Goken, Strain rate sensitivity of ultrafine grained fcc and bcc-type metals, Mat. Sci. For. 503-504 (2006) 781-786.

DOI: 10.4028/www.scientific.net/msf.503-504.781

Google Scholar

[8] F. Dalla Torre, H. Van Swygenhoven, M. Victoria, Nanocrystalline electrodeposited Ni: microstructure and tensile properties, Acta Mat. 51 (2002) 3957-3970.

DOI: 10.1016/s1359-6454(02)00198-2

Google Scholar

[9] E. Ma, Instabilities and ductility of nanocrystalline and ultafine-grained metals, Scripta Mat. 49 (2003) 663-668.

DOI: 10.1016/s1359-6462(03)00396-8

Google Scholar

[10] T. Konkova, A. Korznikov, S. Mironov, M.M. Myshlyaev, S.L. Semiatin, Annealing behavior of cryogenically-rolled copper, Mater. Sci. Eng. A. 585 (2013) 178-189.

DOI: 10.1016/j.msea.2013.07.042

Google Scholar

[11] Y.M. Wang, M.W. Chen, F. Zhou, E. Ma, High tensile ductility in a nanostructured metals, Nature 419 (2002) 912.

DOI: 10.1038/nature01133

Google Scholar

[12] E.V. Naydenkin, K.V. Ivanov, Evolution of grain-boundary ensembles in nickel during boundary migration induced by copper diffusion, Bul. Rus. Acad. Sci.: Phys. 77 (2013) 1382-1385.

DOI: 10.3103/s1062873813110233

Google Scholar

[13] F. Liu, Yu. Zhang, J.T. Wang. Microstructure evolution of pure nickel up to a high strain level during equal-channel angular pressing, Mat. Sci. For. 667-669 (2011) 319-324.

DOI: 10.4028/www.scientific.net/msf.667-669.319

Google Scholar

[14] X. Huang, A. Vorhauer, G. Winther et al. Evolution of microstructural morfology and boundary spacing during high pressure torsion of nickel // Proc. TMS Meet: UFG Materials III. - 2004. - P. 235-240.

Google Scholar

[15] Z.P. Luo, H.W. Zhang, N. Hansen, K. Lu, Quantification of the microstructures of high purity nickel subjested to dynamic plastic deformation, Acta Mat. 60 (2012) 1322-1333.

DOI: 10.1016/j.actamat.2011.11.035

Google Scholar

[16] Yu.R. Kolobov, R.Z. Valiev, G.P. Grabovetskaya, A.P. Zhilyaev, E.F. Dudarev, K.V. Ivanov, M.B. Ivanov, O.A. Kashin, E.V. Naydenkin, Grain boundary diffusion and properties of nanostructured materials, Cambridge Int. Sci. Publ., (2007).

DOI: 10.1016/s1359-6462(00)00699-0

Google Scholar

[17] D.A. Hughes, N. Hansen, Microstructure and strength of nickel at large strains, Acta Mat. 48 (2000) 2985-3004.

DOI: 10.1016/s1359-6454(00)00082-3

Google Scholar

[18] I.A. Ditenberg, E.A. Korznikova, A.N. Tyumentsev, D. Setman, M. Kerber, M.J. Zehetbauer Nonequilibrium structural states in nickel after large plastic deformation, Lat. Mat. 4 (2014) 100103.

DOI: 10.22226/2410-3535-2014-2-100-103

Google Scholar

[19] R.Z. Valiev, E.V. Kozlov, Yu.F. Ivanov, et al. Deformation behavior of ultra-fine-grained copper, Acta Metal. Mater. 42 (1994) 2467.

DOI: 10.1016/0956-7151(94)90326-3

Google Scholar

[20] N.Q. Chinh, P. Szommer, T. Csanadi, T.G. Langdon Flow processes at low temperatures in ultrafine-grained aluminum, Mat. Sci. Eng. A. 434 (2006) 326-332.

DOI: 10.1016/j.msea.2006.07.014

Google Scholar

[21] K.V. Ivanov, E.V. Naydenkin, Distribution of microhardness and tensile properties in aluminum billet processed by equal-channel angular pressing, Rev. Adv. Mat. Sci. 25 (2010) 176-182.

Google Scholar

[22] Y.S. Li, N.R. Tao, K. Lu, Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures, Acta Mat. 56 (2008) 230-241.

DOI: 10.1016/j.actamat.2007.09.020

Google Scholar

[23] Y. Zhang, N.R. Tao, K. Lu Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles, Acta Mat. 56 (2008) 2429-2440.

DOI: 10.1016/j.actamat.2008.01.030

Google Scholar

[24] F.J. Humphreys, M. Hetherly Recrystallization and related annealing phenomena. Oxford: Elsevier, (2004).

Google Scholar

[25] A.P. Zhilyaev, G.V. Nurislamova, M.D. Baro, R.Z. Valiev, T.G. Langdon, Thermal stability and microstrucural evolution in ultrafine-grained nickel after equal-channel angular pressing (ECAP), Metal. Mater. Trans. A. 33 (2002) 1865-1868.

DOI: 10.1007/s11661-002-0197-z

Google Scholar

[26] M.F. Ashby and H.J. Frost, Deformation-mechanism maps: the plasticity and creep of metals and ceramics, Pergamon, (1982).

Google Scholar

[27] M.J. Zehetbauer, G. Steiner, E. Schafler, Deformation induced vacancies with severe plastic deformation: measurements and modeling, Mat. Sci. For. 503-504 (2006) 57-64.

DOI: 10.4028/www.scientific.net/msf.503-504.57

Google Scholar