[1]
M.A. Mayers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci. 51 (2006) 427-556.
Google Scholar
[2]
R.Z. Valiev, Y.Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Fundamentals of superior properties in bulk nanoSPD materials, Mat. Res. Let. 4 (2017) 1-21.
DOI: 10.1080/21663831.2015.1060543
Google Scholar
[3]
I.A. Ovid'ko, R.Z. Valiev, Y.T. Zhu, Review on superior strength and enhanced ductility of metallic nanomaterials, Prog. Mat. Sci. 94 (2018) 462-540.
DOI: 10.1016/j.pmatsci.2018.02.002
Google Scholar
[4]
K.S. Kumar, H. Van Swygenhoven, S. Suresh, Mechanical behavior of nanocrystalline metals and alloys, Acta Mat. 51 (2003) 5743-5774.
DOI: 10.1016/j.actamat.2003.08.032
Google Scholar
[5]
Q. Wei, S. Cheng, K.T. Ramesh, E. Ma, Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: FCC versus BCC metals, Mater. Sci. Eng. A. 381 (2004) 71-79.
DOI: 10.1016/j.msea.2004.03.064
Google Scholar
[6]
N. Wang, Z.R. Wang, K.T. Aust, U. Erb, Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique, Mat. Sci. Eng. A. 237 (1997) 150 -158.
DOI: 10.1016/s0921-5093(97)00124-x
Google Scholar
[7]
J. May, H.W. Hoppel, M. Goken, Strain rate sensitivity of ultrafine grained fcc and bcc-type metals, Mat. Sci. For. 503-504 (2006) 781-786.
DOI: 10.4028/www.scientific.net/msf.503-504.781
Google Scholar
[8]
F. Dalla Torre, H. Van Swygenhoven, M. Victoria, Nanocrystalline electrodeposited Ni: microstructure and tensile properties, Acta Mat. 51 (2002) 3957-3970.
DOI: 10.1016/s1359-6454(02)00198-2
Google Scholar
[9]
E. Ma, Instabilities and ductility of nanocrystalline and ultafine-grained metals, Scripta Mat. 49 (2003) 663-668.
DOI: 10.1016/s1359-6462(03)00396-8
Google Scholar
[10]
T. Konkova, A. Korznikov, S. Mironov, M.M. Myshlyaev, S.L. Semiatin, Annealing behavior of cryogenically-rolled copper, Mater. Sci. Eng. A. 585 (2013) 178-189.
DOI: 10.1016/j.msea.2013.07.042
Google Scholar
[11]
Y.M. Wang, M.W. Chen, F. Zhou, E. Ma, High tensile ductility in a nanostructured metals, Nature 419 (2002) 912.
DOI: 10.1038/nature01133
Google Scholar
[12]
E.V. Naydenkin, K.V. Ivanov, Evolution of grain-boundary ensembles in nickel during boundary migration induced by copper diffusion, Bul. Rus. Acad. Sci.: Phys. 77 (2013) 1382-1385.
DOI: 10.3103/s1062873813110233
Google Scholar
[13]
F. Liu, Yu. Zhang, J.T. Wang. Microstructure evolution of pure nickel up to a high strain level during equal-channel angular pressing, Mat. Sci. For. 667-669 (2011) 319-324.
DOI: 10.4028/www.scientific.net/msf.667-669.319
Google Scholar
[14]
X. Huang, A. Vorhauer, G. Winther et al. Evolution of microstructural morfology and boundary spacing during high pressure torsion of nickel // Proc. TMS Meet: UFG Materials III. - 2004. - P. 235-240.
Google Scholar
[15]
Z.P. Luo, H.W. Zhang, N. Hansen, K. Lu, Quantification of the microstructures of high purity nickel subjested to dynamic plastic deformation, Acta Mat. 60 (2012) 1322-1333.
DOI: 10.1016/j.actamat.2011.11.035
Google Scholar
[16]
Yu.R. Kolobov, R.Z. Valiev, G.P. Grabovetskaya, A.P. Zhilyaev, E.F. Dudarev, K.V. Ivanov, M.B. Ivanov, O.A. Kashin, E.V. Naydenkin, Grain boundary diffusion and properties of nanostructured materials, Cambridge Int. Sci. Publ., (2007).
DOI: 10.1016/s1359-6462(00)00699-0
Google Scholar
[17]
D.A. Hughes, N. Hansen, Microstructure and strength of nickel at large strains, Acta Mat. 48 (2000) 2985-3004.
DOI: 10.1016/s1359-6454(00)00082-3
Google Scholar
[18]
I.A. Ditenberg, E.A. Korznikova, A.N. Tyumentsev, D. Setman, M. Kerber, M.J. Zehetbauer Nonequilibrium structural states in nickel after large plastic deformation, Lat. Mat. 4 (2014) 100103.
DOI: 10.22226/2410-3535-2014-2-100-103
Google Scholar
[19]
R.Z. Valiev, E.V. Kozlov, Yu.F. Ivanov, et al. Deformation behavior of ultra-fine-grained copper, Acta Metal. Mater. 42 (1994) 2467.
DOI: 10.1016/0956-7151(94)90326-3
Google Scholar
[20]
N.Q. Chinh, P. Szommer, T. Csanadi, T.G. Langdon Flow processes at low temperatures in ultrafine-grained aluminum, Mat. Sci. Eng. A. 434 (2006) 326-332.
DOI: 10.1016/j.msea.2006.07.014
Google Scholar
[21]
K.V. Ivanov, E.V. Naydenkin, Distribution of microhardness and tensile properties in aluminum billet processed by equal-channel angular pressing, Rev. Adv. Mat. Sci. 25 (2010) 176-182.
Google Scholar
[22]
Y.S. Li, N.R. Tao, K. Lu, Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures, Acta Mat. 56 (2008) 230-241.
DOI: 10.1016/j.actamat.2007.09.020
Google Scholar
[23]
Y. Zhang, N.R. Tao, K. Lu Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles, Acta Mat. 56 (2008) 2429-2440.
DOI: 10.1016/j.actamat.2008.01.030
Google Scholar
[24]
F.J. Humphreys, M. Hetherly Recrystallization and related annealing phenomena. Oxford: Elsevier, (2004).
Google Scholar
[25]
A.P. Zhilyaev, G.V. Nurislamova, M.D. Baro, R.Z. Valiev, T.G. Langdon, Thermal stability and microstrucural evolution in ultrafine-grained nickel after equal-channel angular pressing (ECAP), Metal. Mater. Trans. A. 33 (2002) 1865-1868.
DOI: 10.1007/s11661-002-0197-z
Google Scholar
[26]
M.F. Ashby and H.J. Frost, Deformation-mechanism maps: the plasticity and creep of metals and ceramics, Pergamon, (1982).
Google Scholar
[27]
M.J. Zehetbauer, G. Steiner, E. Schafler, Deformation induced vacancies with severe plastic deformation: measurements and modeling, Mat. Sci. For. 503-504 (2006) 57-64.
DOI: 10.4028/www.scientific.net/msf.503-504.57
Google Scholar