Effect of X46Cr13 Microstructure on the Ultrasound Rate Propagation under Plastic Deformation

Article Preview

Abstract:

The change in ultrasound rate in the plastic deformation of high-chromium X39Cr13 stainless steel with ferrite–carbide structure (initially), martensite structure (after quenching), and sorbite structure (after high tempering) is investigated. The loading curve is different for each state. In the initial state, the loading curve is practically parabolic. In the martensitic state, linear strain hardening is the only stage. In the sorbitic state, a three-stage curve is observed. The structure of the steel after different types of heat treatment is studied by optical and scanning probe microscopy. In parallel with the recording of the loading curve, the change in properties of the ultrasound surface waves (the Rayleigh waves) in the steel under tension is measured. The structure of the steel determines not only the type of deformation curve in uniaxial extension but also the dependence of the ultrasound rate on the strain.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 313)

Pages:

8-14

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Pelleg J. Mechanical properties of materials. – Dordrecht, Heidel- berg, New York, London: Springer, 2013. – 644 p.

Google Scholar

[2] Gartsev S., Bernd Köhler B. Direct measurements of Rayleigh wave acoustoelastic constants for shot-peened superalloys // NDT & E Int. 2020. Vol. 113. P. 102279.

DOI: 10.1016/j.ndteint.2020.102279

Google Scholar

[3] Lillamand I., Chaix J.-F., Ploix M.-A., Garnier V., Acoustoelastic effect in concrete material under uni-axial compressive loading // NDT & E Int. 2020. Vol. 43. Is. 8. P. 655-660.

DOI: 10.1016/j.ndteint.2010.07.001

Google Scholar

[4] Murav'ev V.V., Volkova L.V. Estimation of residual stresses in locomotive wheel treads using the acoustoelasticity method // Rus. J. Nondestr. Test. 2013. Vol. 49. No. 7. P. 382 – 386.

DOI: 10.1134/s1061830913070073

Google Scholar

[5] Chaki S., Bourse G. Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands // Ultrasonics. 2009. Vol. 49. Is. 2. P. 162-171.

DOI: 10.1016/j.ultras.2008.07.009

Google Scholar

[6] Murav'ev V.V., Murav'ev M.V., Bekher S.A. A novel technique of AE signal processing for upgrading the accuracy of flaw localization // Rus. J. Nondestr. Test. 2002. Vol. 38. No. 8. P. 600 – 610.

Google Scholar

[7] Murav'ev V.V., Murav'eva O.V., Platunov A.V. et al. Investigations of acoustoelastic characteristics of rod waves in heat-treated steel wires using the electromagnetic-acoustic method // Rus. J. Nondestr. Test. 2012. Vol. 48. No. 8. P. 447 – 456.

DOI: 10.1134/s1061830912080062

Google Scholar

[8] Toozandehjani M. et al. On the correlation between microstructural evolution and ultrasonic properties: a review // J. Mater. Sci. 2015. Vol. 50, № 7. P. 2643–2665.

Google Scholar

[9] Takahashi S. Measurement of third-order elastic constants and stress dependent coefficients for steels // Mech. Adv. Mater. Mod. Process. 2018. Vol. 4, № 1.

DOI: 10.1186/s40759-018-0035-7

Google Scholar

[10] Gebrekidan S.B. et al. Nonlinear ultrasonic characterization of early degradation of fatigued Al6061-T6 with harmonic generation technique // Ultrasonics. 2018. Vol. 85. P. 23–30.

DOI: 10.1016/j.ultras.2017.12.011

Google Scholar

[11] Kumar A. Nonlinear ultrasonics for in situ damage detection during high frequency fatigue // J. Appl. Phys. 2009. Vol. 106. P. 024904.

Google Scholar

[12] Valluri J.S., Balasubramaniam K., Prakash R.V. Creep damage characterization using non-linear ultrasonic techniques // Acta Mater. 2010. Vol. 58, № 6. P. 2079–(2090).

DOI: 10.1016/j.actamat.2009.11.050

Google Scholar

[13] Cantrell J.H. Quantitative assessment of fatigue damage accumulation in wavy slip metals from acoustic harmonic generation // Phil. Mag. 2006. Vol. 86, № 11. P. 1539–1554.

DOI: 10.1080/14786430500365358

Google Scholar

[14] Danilov V.I., Orlova D.V., Zuev L.B., Shlyakhova G.V. Special features of the localized plastic deformation and fracture of high chromium steel of the martensitic class // Rus. Phys. J. 2009. Vol. 52. No. 5. P. 525 – 531.

DOI: 10.1007/s11182-009-9258-8

Google Scholar

[15] Shlyakhova G.V., Barannikova S.A., Zuev L.B. Nanostructure of superconducting Nb-Ti cable // Steel in Transl. 2013. Vol. 43. No. 10. P. 640 – 643.

DOI: 10.3103/s0967091213100124

Google Scholar

[16] Shlyakhova G.V., Barannikova S.A., Bochkareva A.V., Li Y.V., Zuev L.B. Structure of a Carbon Steel–Stainless Steel Bimetal // Steel in Transl. 2018. V. 48 (4). P. 219-223.

DOI: 10.3103/s0967091218040101

Google Scholar

[17] Barannikova S., Schlyakhova G., Maslova O., Li Y., Lev Z. Fine structural characterization of the elements of a Nb-Ti superconducting cable // J. Mater. Res. Tech. 2019. Vol. 8 (1). P. 323-332.

DOI: 10.1016/j.jmrt.2018.02.004

Google Scholar

[18] Fierro G.P.M. et al. Nonlinear ultrasound modelling and validation of fatigue damage // J. Sound Vib. 2015. Vol. 343. P. 121–130.

Google Scholar

[19] Kim J.-Y. et al. Acoustic Nonlinearity Parameter Due to Microplasticity // J. Nondestruct. Eval. 2006. Vol. 25, № 1. P. 28–36.

DOI: 10.1007/s10921-006-0004-7

Google Scholar

[20] Guz A.N., Makhort, F.G. The physical fundamentals of the ultrasonic nondestructive stress analysis of solids // Int. Appl. Mech. 2000. Vol. 36 (9). P. 1119-1149.

Google Scholar

[21] Khan S.Z. et al. Assessment of material properties of AISI 316L stainless steel using non-destructive testing // Nondestruct. Test. Eval. 2016. Vol. 31, № 4. P. 360–370.

DOI: 10.1080/10589759.2015.1121265

Google Scholar

[22] Carreon H. et al. Relation between hardness and ultrasonic velocity on pipeline steel welded joints // Nondestruct. Test. Eval. 2016. Vol. 31. Is. 2. P. 97–108.

Google Scholar

[23] Ohtani T. et al. Ultrasonic attenuation and microstructural evolution throughout tension–compression fatigue of a low-carbon steel // Mater. Sci. Eng. A. 2006. Vol. 442. Is. 1. P. 466–470.

DOI: 10.1016/j.msea.2006.02.226

Google Scholar