Characterization of Wetting of Deep Silica Nanoholes by Aqueous Solutions Using ATR-FTIR

Article Preview

Abstract:

In advanced semiconductor manufacturing, deep hydrophilic nanoholes are found in various applications, which require a wet clean after patterning. In this work, we use an in-situ ATR-FTIR spectroscopy technique to characterize the wetting of nanoholes in a silica matrix by UPW and electrolyte solutions. Wetting was much slower than predicted by a numerical model, while temperature cycling evidenced the formation of unexpectedly stable gas pockets in the wetted nanoholes. Water structuring in the nanoholes was characterized by an analysis of the OH stretching peak. Besides, monitoring the dissolution of CO2 in the wetted nanoholes allowed to compare the diffusivity in the nano-confined solutions with that in bulk solutions. Our results strongly suggest that the gas pockets were stabilized by the decreased gas diffusivity resulting from water structuring.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 314)

Pages:

150-154

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.-A. Ragnarsson, H. Dekkers, T. Schram, S.A. Chew, B. Parvais, M. Dehan, K. Devriendt, Z. Tao, F. Sebaai, et al., VLSI Tech. Digest (2015) 148–149.

Google Scholar

[2] V. Vega-Gonzalez, C.J. Wilson, D. Briggs, et al., IEDM Tech. Digest (2019) 454-457.

Google Scholar

[3] S. S.-W. Wang, Semiconductor Eng. (2019), https://semiengineering.com/3d-nand-challenges-beyond-96-layer-memory-arrays/.

Google Scholar

[4] M.T. Spuller and D.W. Hess, J. Electrochem. Soc. 150 (2003) G476-G480.

Google Scholar

[5] J. Haneveld, N.R. Tas, N. Brunets, H.V. Jansen, and M. Elwenspoek, J. Appl. Phys. 104 (2008) 014309.

DOI: 10.1063/1.2952053

Google Scholar

[6] V.N. Phan, N.-T. Nguyen, C. Yang, P. Joseph, L. Djeghlaf, D. Bourrier, and A.-M. Gue, Langmuir 26 (2010) 13251-13255.

DOI: 10.1021/la1010902

Google Scholar

[7] C. Virgilio, L. Broussous, P. Garnier, J. Carlier, P. Campistron, V. Thomy, M. Toubal, P. Besson, L. Gabette, and B. Nongaillard, Solid State Phenom. 255 (2016) 129-135.

DOI: 10.4028/www.scientific.net/ssp.255.129

Google Scholar

[8] N. Vrancken; J. Li, S. Sergeant; G. Vereecke; G. Doumen; F. Holsteyns; H. Terryn; S. De Gendt and X. Xu, Langmuir 33 (2016) 3601-3609.

DOI: 10.1021/acs.langmuir.6b04471

Google Scholar

[9] G. Vereecke, H. De Coster, S. Van Alphen, P. Carolan, H. Bender, K. Willems, L.-Å. Ragnarsson, P. Van Dorpe, N. Horiguchi, and F. Holsteyns, Microelec. Eng. 200 (2018) 56–61.

DOI: 10.1016/j.mee.2018.09.004

Google Scholar

[10] G. Vereecke, XiuMei Xu, W.K. Tsai, Hui Yang, S. Armini, T. Delande, G. Doumen, F. Kentie, Xiaoping Shi, I. Simms, K. Nafus, F. Holsteyns, H. Struyf, and S. De Gendt, ECS J. Solid State Sci. Technol. 3 (2014) N3095-N3100.

DOI: 10.1149/2.013401jss

Google Scholar

[11] G. Vereecke, H. Debruyn, Q. De Keyzer, R. Vos, A. Dutta and F. Holsteyns, Solid State Phenomena 282 (2018), 182-189.

DOI: 10.4028/www.scientific.net/ssp.282.182

Google Scholar

[12] I. Marcus, Chem. Rev. 109 (2009) 1346-1370.

Google Scholar

[13] G. Vereecke, World Chemistry Forum 2019, Forum 2-1: Nanochemistry, Barcelona, Spain, May 22-24, (2019).

Google Scholar

[14] S. Ljunggren and J.C. Eriksson, Colloids Surf. A 129-130 (1997) 151-155.

Google Scholar

[15] S.L. Warring, D.A. Beattie, and A.J. McQuillan, Langmuir 32 (2016) 1568-1576.

Google Scholar

[16] K. Mawatari, Y. Kazoe, H. Shimizu, Y. Pihosh, and T. Kitamori, Anal. Chem. 86 (2014) 4068-4077.

DOI: 10.1021/ac4026303

Google Scholar

[17] K. Morikawa, Y. Kazoe, K. Mawatari, T. Tsukahara, and T. Kitamori, Anal. Chem. 87 (2015) 1475-1479.

DOI: 10.1021/ac504141j

Google Scholar