Influence of Cellulose Fiber Content on Morphology and Properties of Poly(Lactic Acid)/Propylene-Ethylene Copolymer/Cellulose Composites

Article Preview

Abstract:

This work studied the effects of medium-length fibrous cellulose (MFC) on the morphology, mechanical and thermal properties of poly(lactic acid) (PLA)/propylene-ethylene copolymer (PEC) (90/10) blends. The morphological analysis of PLA/MFC composites observed MFC fibers inserted in the PLA matrix and MFC appeared agglomeration when added high MFC loading. The phase morphology showed the two-phase separation of PLA/PEC blends. The presence of PEC reduced the agglomeration of MFC fibers in polymer matrix. The tensile stress and strain curves found that the ultimate stress of PLA was the highest value and the addition of MFC increased Young’s modulus of PLA/MFC and PLA/PEC/MFC composites. The PEC presence improved the strain at breaking point of PLA/PEC blends. The thermal properties found that the incorporation of MFC did not improve the thermal stability of PLA/MFC and PLA/PEC/MFC composites due to the PLA had degradation temperature higher than MFC.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 315)

Pages:

128-133

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Pracella, Md.M. Haque, M. Paci, V. Alvarez, Property tuning of poly(lactic acid)/cellulose bio-composites through blending with modified ethylene-vinyl acetate copolymer, Carbohydr. Polym. 137 (2016) 515-524.

DOI: 10.1016/j.carbpol.2015.10.094

Google Scholar

[2] V. Gigante, L. Aliotta, V.T. Phuong, M.B. Coltelli, P. Cinelli, A. Lazzeri, Effects of waviness on fiber-length distribution and interfacial shear strength of natural fibers reinforced composites, Compos. Sci. Technol. 152 (2017) 129-138.

DOI: 10.1016/j.compscitech.2017.09.008

Google Scholar

[3] J.A.Á. Ramírez, J. Bovi, C. Bernal, M.I. Errea, M.L. Foresti, Development of poly(lactic acid) nanocomposites reinforced with hydrophobized bacterial cellulose, J. Polym. Environ. 28 (2020) 61-73.

DOI: 10.1007/s10924-019-01581-1

Google Scholar

[4] F. Luzi, E. Fortunati, A. Jiménez, D. Puglia, D. Pezzolla, G. Gigliotti, J.M. Kenny, A. Chiralt, L. Torre, Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres, Ind. Crops Prod. 93 (2016) 276-289.

DOI: 10.1016/j.indcrop.2016.01.045

Google Scholar

[5] S. Djellali, N. Haddaoui, T. Sadoun, A. Bergeret, Y. Grohens, Structural, morphological and mechanical characteristics of polyethylene, poly(lactic acid) and poly(ethylene-co-glycidyl methacrylate) blends, Iran. Polym. J. 22 (2013) 245-257.

DOI: 10.1007/s13726-013-0126-6

Google Scholar

[6] M. Perić, R. Putz, C. Paulik, Influence of nanofibrillated cellulose on the mechanical and thermal properties of poly(lactic acid), Eur. Polym. J. 114 (2019) 426-433.

DOI: 10.1016/j.eurpolymj.2019.03.014

Google Scholar

[7] R.S. Araújo, L.C. Ferreira, C.C. Rezende, M.F.V. Marques, M.E. Errico, R. Avolio, M. Avella, G. Gentile, P. Russo, Poly(lactic acid)/cellulose composites obtained from modified cotton fibers by successive acid hydrolysis, J. Polym. Environ. 26 (2018) 3149-3158.

DOI: 10.1007/s10924-018-1198-3

Google Scholar

[8] S.H. Sung, Y. Chang, J. Han, Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin, Carbohydr. Polym. 169 (2017) 495-503.

DOI: 10.1016/j.carbpol.2017.04.037

Google Scholar

[9] N. Jamaluddin, T. Kanno, T.A. Asoh, H. Uyama, Surface modification of cellulose nanofiber using acid anhydride for poly (lactic acid) reinforcement, Mater. Today Commun. 21 (2019) 100587.

DOI: 10.1016/j.mtcomm.2019.100587

Google Scholar

[10] T.C. Nguyen, C. Ruksakulpiwat, Y. Ruksakulpiwat, Effect of cellulose nanofibers from cassava pulp on physical properties of poly(lactic acid) biocomposites, J. Thermoplast. Compos. Mater. (2019) 1-15.

DOI: 10.1177/0892705718820395

Google Scholar